Flavonoids from the leaves of Iranian Linden; Tilia rubra subsp. caucasica

Document Type: Original paper


Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.


Background and objectives: Plants belonging to the genus Tilia L. (Tiliaceae) are often tall beautiful trees which are considered for various medicinal potentials of their flowers and leaves. The present study was an attempt to investigate the phytochemical constituents of Tilia rubra subsp. caucasica leaves from the hyrcanian forests of north of Iran. Methods: Chromatography on Silica gel (normal and reversed-phase) and Sephadex LH20 was applied for isolation and purification of the compounds from the hydroalcoholic extract of the plant leaves. The structures of isolated compounds were elucidated using UV, 1H-NMR and 13C-NMR spectral analyses. Results: Four flavonoid glycosides, quercetin-3-O-β-D-glucoside-7-O-α-L-rhamnoside (petiolaroside), quercetin-3-O-α-L-rhamnoside (quercitrin), apigenin-7-O-β-D-glucoside (cosmosiin) and luteolin-7-O-β-D-glucoside (cynaroside) were isolated from T. rubra subsp. caucasica leaves, which have been previously documented for their various biological activities. Conclusion: The results of this study introduc T. rubra subsp. caucasica as a source of bioactive flavonoid glycosides and highlight it as an appropriate option for further pharmacognostical studies.


[1]  Radoglou K, Dobrowolska D, Spyroglou G, Nicolescu V. A review on the ecology and silviculture of limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tomentosa Moench.) in Europe. Die Bodenkultur. 2009; 9(60): 9-19.

[2]  Kew: The Plant List database. Version 1.1; Available from: http://www.theplantlist.org/.

[3]  Browičz K. Tiliaceae in KH. Rechinger (ed.) Flora Iranica no: 148. Graz: Akademische Druck-u Verlagsanstalt, 1981.

[4]  Zare H, Amini T, Assadi M. A review of the genus Tilia L. (Tiliaceae) in Iran, new records and new species. Iran J Bot. 2012; 18(2): 175-190.

[5]  Association BHM. British herbal pharmacopoeia. Bournemouth: British Herbal Medicine Association, 1996.

[6]  Blumenthal M, Busse W, Goldberg A, Gruenwaid J, Hall T, Klein S, Riggins C, Rister R. The complete German commission E monographs: therapeutic guide to herbal medicines. Austin: American Botanical Council, 1998.

[7]  Amin GR. Popular medicinal plants of Iran. Tehran: Iranian Research Institute of Medicinal Plants, 1991.

[8]  Parsa A. Medicinal plants and drugs of plant origin in Iran. IV. Plant Food Hum Nutr. 1960; 7(1): 65-136.

[9]  Pietta P, Mauri P, Bruno A, Zini L. High-performance liquid chromatography and micellar electrokinetic chromatography of flavonol glycosides from Tilia. J Chromatogr A. 1993; 638(2): 357-361.

[10]  Negri G, Santi D, Tabach R. Flavonol glycosides found in hydroethanolic extracts from Tilia cordata, a species utilized as anxiolytics. Rev Bras Plantas Med. 2013; 15(2): 217-224.

[11]  Aguirre-Hernández E, González-Trujano ME, Martínez AL, Moreno J, Kite G, Terrazas T, Soto-Hernández M. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J Ethnopharmacol. 2010; 127(1): 91-97.

[12]  Martínez AL, González-Trujano ME, Aguirre-Hernández E, Moreno J, Soto-Hernández M, López-Muñoz FJ. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology. 2009; 56(2): 564-571.

[13]  Toker G, Aslan M, Yeşilada E, Memişoğlu M, Ito S. Comparative evaluation of the flavonoid content in officinal Tiliae flos and Turkish lime species for quality assessment. J Pharmaceut Biomed. 2001; 26(1): 111-121.

[14]  Mabry TJ, Markham KR, Thomas MB. The systematic identification of flavonoids. New York: Springer-Verlag, 1970.

[15]  Kim AR, Ko HJ, Chowdhury MA, Chang YS, Woo ER. Chemical constituents on the aerial parts of Artemisia selengensis and their IL-6 inhibitory activity. Arch Pharm Res. in press.

[16]  Su YQ, Shen YH, Tang J, Zhang WD. Chemical constituents of Incarvillea mairei var. grandiflora. Chem Nat Compd. 2010; 46(1): 109-111.

[17]  Lee JH, Park KH, Lee MH, Kim HT, Seo WD, Kim JY, Baek IY, Jang DS, Ha TJ. Identification, characterization, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean Perilla (Perilla frutescens) cultivars. Food Chem. 2013; 136(2): 843-852.

[18]  Yassa N, Saeidnia S, Pirouzi R, Akbaripour M, Shafiee A. Three phenolic glycosides and immunological properties of Achillea millefolium from Iran, population of Golestan. Daru J Pharm Sci. 2007; 15(1): 49-52.

[19]  Akyuz E, Şahin H, Islamoglu F, Kolayli S, Sandra P. Evaluation of phenolic compounds in Tilia rubra subsp. caucasica by HPLC-UV and HPLC-UV-MS/MS. Int J Food Prop. 2014; 17(2): 331-343.

[20]  Loscalzo LM, Wasowski C, Marder M. Neuroactive flavonoid glycosides from Tilia petiolaris DC extracts. Phytother Res. 2009; 23(10): 1453-1457.

[21]  Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, Dias G, Morel AF, Nogueira CW, Rocha JB. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006; 1107(1): 192-198.

[22]  Camuesco D, Comalada M, Rodríguez‐Cabezas ME, Nieto A, Lorente MD, Concha A, Zarzuelo A, Gálvez J. The intestinal anti‐inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Brit J Pharmacol. 2004; 143(7): 908-918.

[23]  Gadotti VM, Santos AR, Meyre‐Silva C, Schmeling LO, Machado C, Liz FH. Antinociceptive action of the extract and the flavonoid quercitrin isolated from Bauhinia microstachya leaves. J Pharm Pharmacol. 2005; 57(10): 1345-1351.

[24]  Babujanarthanam R, Kavitha P, Pandian MR. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin‐induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fund Clin pharmacol. 2010; 24(3): 357-364.

[25]  Muzitano MF, Cruz EA, Almeida AP, Da Silva SA, Kaiser CR, Guette C, Rossi-Bergmann B, Costa SS. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med. 2006; 72(1): 81-83.

[26]  Galvez J, Crespo M, Jimenez J, Suarez A, Zarzuelo A. Antidiarrhoeic activity of quercitrin in mice and rats. J Pharm Pharmacol. 1993; 45(2): 157-159.

[27]  Rao YK, Lee MJ, Chen K, Lee YC, Wu WS, Tzeng YM. Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells.  Evid-Based Compl Alt. 2011; 1-9.

[28]  Shimizu M, Ito T, Terashima S, Hayashi T, Arisawa M, Morita N, Kurokawa S, Ito K, Hashimoto Y. Inhibition of lens aldose reductase by flavonoids. Phytochemistry. 1984; 23(9): 1885-1888.

[29]  Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agr Food Chem. 2001; 49(6): 2774-2779.

[30]  Park CM, Song YS. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 2647 cells. Nutr Res Pract. 2013; 7(6): 423-429.

[31]  Kim JS, Kwon CS, Son KH. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotech Bioch. 2000; 64(11): 2458-2461.

[32]  Jin M, Yang JH, Lee E, Lu Y, Kwon S, Son KH, Son JK, Chang HW. Antiasthmatic activity of luteolin-7-O-glucoside from Ailanthus altissima through the down-regulation of T helper 2 cytokine expression and inhibition of prostaglandin E2 production in an ovalbumin-induced asthma model. Biol Pharm Bull. 2009; 32(9):1500-1503.

[33]  Akroum S, Bendjeddou D, Satta D, Lalaoui K. Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. Am-Euras J Sci Res. 2009; 4(2): 93-96.

[34]  Baskar AA, Ignacimuthu S, Michael GP, Al Numair KS. Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from Ophiorrhiza mungos Linn. Nutr Cancer. 2011; 63(1): 130-138.