Matricaria chamomilla: an Updated Review on Biological Activities of the Plant and Constituents

Document Type : Review

Authors

1 Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.

2 Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

3 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

4 School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Chamomile or camomile (Matricaria chamomilla L. syn. Matricaria recutita L.) belongs to the family Asteraceae. It is native to Europe and West Asia and has spread to other parts of the world. The plant essential oils and extracts have been frequently used for thousands of years in traditional and folk medicines across the world, due to their valuable medicinal properties. Currently, it is widely applied in different industries such as pharmaceutical, cosmetics, and food industry. Herein, the literature was carefully reviewed via search engines such as Google Scholar, Pub Med, and Scopus using keywords including biological activity, chamomile, flavonoids, pharmacological activity, Matricaria chamomilla, and Matricaria recutita. Sesquiterpenes such as bisabolol oxide B, bisabolone oxide, and bisabolol oxide A have been identified as the major constituents of chamomile essential oil. Also, various phenolic compounds and flavonoids were mostly reported as active compounds in the plant extracts. Although there are various reports pinpointing the mechanisms of action of chamomile and its constituents, some points have remained ambiguous and further well-designed clinical trials are required. Focusing on the importance of valuable biological properties of chamomile, the present review precisely discussed the characterized chemical constituents of the plant along with their mechanisms of action.

Keywords


  • Ruzicka J, Novak J. Mitochondrial genome variation between different accessions of Matricaria chamomilla (Asteraceae) based on SNP mutation analysis. Genet Resour Crop Evol. 2020; 67(4): 853–864.
  • Franke R, Schilcher H. Relevance and use of chamomile (Matricaria recutita). Acta Hortic. 2007; 749: 29–43.
  • Avonto C, Rua D, Lasonkar PB, Chittiboyina AG, Khan IA. Identification of a compound isolated from German chamomile (Matricaria chamomilla) with dermal sensitization potential. Toxicol Appl Pharmacol. 2017; 318: 16–22.
  • Seyedjavadi SS, Khani S, Zare‐Zardini H, Halabian R, Goudarzi M, Khatami S, Imani Fooladi AA, Amani J, Razzaghi-Abyaneh M. Isolation, functional characterization, and biological properties of MCh‐AMP1, a novel antifungal peptide from Matricaria chamomilla Chem Biol Drug Des. 2019; 93(5): 949–959.
  • Zlabur JS, Zutić I, Radman S, Plesa M, Brnčić M, Barba FJ, Rocchetti G, Lucini L, Lorenzo JM, Domínguez R, Rimac Brnčić S, Galić A, Voća S. Effect of different green extraction methods and solvents on bioactive components of chamomile (Matricaria chamomilla) flowers. Molecules. 2020; 25(4): 1–17.
  • Singh O, Khanam Z, Misra N, Srivastava MK. Chamomile (Matricaria chamomilla): an overview. Pharmacogn Rev. 2011; 5(9): 82–95.
  • Gupta V, Mittal P, Bansal P, Khokra SL, Kaushik D. Pharmacological potential of Matricaria recutita-a review. J Int J Pharm Sci Drug Res. 2010; 2(1): 12–16.
  • McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita). Phytother Res. 2006; 20(7): 519–530.
  • Al-Snafi AE, Hasham LF. Bioactive constituents and pharmacological importance of Matricaria chamomilla: a recent review. GSC Biol Pharm Sci. 2023; 22(2): 79–98.
  • Ivanović S, Pajić M, Marković T. Economic effectiveness of mechanized harvesting of chamomile. Econ Agric. 2014; 61(2): 319–330.
  • Mavandi P, Assareh MH, Dehshiri A, Rezadoost H, Abdossi V. Flower biomass, essential oil production and chemotype identification of some iranian Matricaria chamomilla recutita (L.) accessions and commercial varieties. J Essent Oil-Bear Plants. 2019; 22(5): 1228–1240.
  • Berechet MD, Manaila E, Stelescu MD, Craciun G. The composition of essential oils obtained from Achillea millefolium and Matricaria chamomilla, originary from Romania. Rev Chim. 2017; 68(12): 2787–2795.
  • Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla). J Essent Oil-Bear Plants. 2016; 19(8): 2017–2028.
  • Rezaeih KAP, Gurbuz B, Uyanik M, Rahimi A, Arslan N. Volatile constituents variability in Matricaria chamomilla from Ankara, Turkey. J Essent Oil-Bear Plants. 2015; 18(1): 255–260.
  • Pirzad A, Alyari H, Shakiba M, Zehtab-Salmasi S, Mohammadi A. Essential oil content and composition of German chamomile (Matricaria chamomilla ) at different irrigation regimes. J Agron. 2006; 5(3): 451–455.
  • Pino JA, Bayat F, Marbot R, Aguero J. Essential oil of chamomile Chamomilla recutita (L.) Rausch. from Iran. J Essent Oil Res. 2002; 14(6): 407–408.
  • Homami SS, Jaimand K, Rezaee MB, Afzalzadeh R. Comparative studies of different extraction methods of essential oil from Matricaria recutita in Iran. J Chil Chem Soc. 2016; 61(2): 2982–2984.
  • Baghalian K, Haghiry A, Naghavi MR, Mohammadi AJSH. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita). Sci Hortic. 2008; 116(4): 437–441.
  • Rahmati M, Azizi M, Khayyat MH, Nemati H, Asili J. Yield and oil constituents of chamomile (Matricaria chamomilla) flowers depending on nitrogen application, plant density and climate conditions. J Essent Oil-Bear Plants. 2011; 14(6): 731–741.
  • Manayi A, Saeidnia S. A concern on phthalate pollution of herbal extracts/medicines and detection methods. Res J Pharmacogn. 2015; 2(3): 49–54.
  • Manayi A, Kurepaz-Mahmoodabadi M, Gohari AR, Ajani Y, Saeidnia S. Presence of phthalate derivatives in the essential oils of a medicinal plant Achillea tenuifolia. Daru. 2014; 22(1): 1–6.
  • Omidpanah S, Saeidnia S, Saeedi M, Hadjiakhondi A, Manayi A. Phthalate contamination of some plants and herbal products. Bol Latinoam Caribe Plantas Med Aromát. 2018; 17(1): 61–67.
  • Avonto C, Wang M, Chittiboyina AG, Avula B, Zhao J, Khan IA. Hydroxylated bisabolol oxides: evidence for secondary oxidative metabolism in Matricaria chamomilla. J Nat Prod. 2013; 76(10): 1848–1853.
  • Fonseca FN, Tavares MF, Horváth C. Capillary electrochromatography of selected phenolic compounds of Chamomilla recutita. J Chromatogr A. 2007; 1154(1-2): 390–399.
  • Weber B, Herrmann M, Hartmann B, Joppe H, Schmidt CO, Bertram HJ. HPLC/MS and HPLC/NMR as hyphenated techniques for accelerated characterization of the main constituents in chamomile (Chamomilla recutita [L.] Rauschert). Eur Food Res Technol. 2008; 226(4): 755–760.
  • Kanamori H, Terauchi M, Fuse JI, Sakamoto I. Studies on the evaluation of Chamomillae flos (part 1). Simultaneous and quantitative analysis of fat-soluble compounds. Japanese J Pharmacogn. 1992; 46(4): 384–388.
  • Mulinacci N, Romani A, Pinelli P, Vincieri F, Prucher D. Characterization of Matricaria recutita flower extracts by HPLC-MS and HPLC-DAD analysis. Chromatographia. 2000; 51(5-6): 301–307.
  • Zhao Y, Sun P, Ma Y, Wang K, Chang X, Bai Y, Zhang D, Yang L. Simultaneous quantitative determination of six caffeoylquinic acids in Matricaria chamomilla with high-performance liquid chromatography. J Chem. 2019; Article ID 4352832.
  • The Metabolomics Innovation Centre (TMIC). [Accessed 2012]. Available from: https://foodb.ca/compounds.
  • Kotov AG, Khvorost PP, Komissarenko NF. Coumarins of Matricaria recutita. Chem Nat Compd. 1992; 27(6): 753.
  • Redaelli C, Formentini L, Santaniello E. HPLC determination of coumarins in Matricaria chamomilla. Planta Med. 1981; 43(12): 412–413.
  • Molnar M, Mendešević N, Šubarić D, Banjari I, Jokić S. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chem Cent J. 2017; 11: 1–8.
  • Repčák M, Imrich J, Franeková M. Umbelliferone, a stress metabolite of Chamomilla recutita (L.) Rauschert. J Plant Physiol. 2001; 158(8): 1085–1087.
  • Petruľová-Poracká V, Repčák M, Vilková M, Imrich J. Coumarins of Matricaria chamomilla: aglycones and glycosides. Food Chem. 2013; 141(1): 54–59.
  • Haghi G, Hatami A, Safaei A, Mehran M. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharm Sci. 2014; 9(1): 31–37.
  • Kunde R, Isaac O. On the flavones of chamomile (Matricaria chamomilla) and a new acetylated apigenin–7–glucoside. Planta Med. 1979; 37(10): 124–130.
  • Exner J, Reichling J, Cole T, Becker H. Methylated flavonoid aglycones from “Matricariae flos”. Planta Med. 1981; 41(2): 198–200.
  • Carle R, Dölle B, Müller W, Baumeister U. Thermospray liquid chromatography-mass spectrometry (TSP LC-MS) analysis of acetylated apigenin 7-glucosides from Chamomilla recutita. Planta Med. 1992; 58: 686–687.
  • Redaelli C, Formentini L, Santaniello E. Apigenin 7-glucoside diacetates in ligulate flowers of Matricaria chamomilla. Phytochemistry. 1982; 21(7): 1828–1830.
  • Švehliková V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, Bao Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004; 65(16): 2323–2332.
  • Maday E, Szentmihályi K, Then M, Szőke É. Mineral element content of chamomile. Acta Aliment. 2000; 29(1): 51–57.
  • Chizzola R, Michitsch H, Mitteregger US. Extractability of selected mineral and trace elements in infusions of chamomile. Int J Food Sci Nutr. 2008; 59(6): 451–456.
  • Roby MHH, Sarhan MA, Selim KAH, Khalel KI. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare) and chamomile (Matricaria chamomilla L.). Ind Crops Prod. 2013; 44: 437–445.
  • Al-Dabbagh B, Elhaty IA, Elhaw M, Murali C, Al Mansoori A, Awad B, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita ). BMC Res Notes. 2019; 12(1): 1–8.
  • Hajaji S, Alimi D, Jabri MA, Abuseir S, Gharbi M, Akkari H. Anthelmintic activity of Tunisian chamomile (Matricaria recutita) against Haemonchus contortus. J Helminthol. 2018; 92(2): 168–177.
  • Sebai H, Jabri MA, Souli A, Hosni K, Rtibi K, Tebourbi O, El-Benna J, Sakly M. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita ) decoction extract against alcohol-induced oxidative stress in rat. Gen Physiol Biophys. 2015; 34(3): 263–275.
  • Jabri MA, Sakly M, Marzouki L, Sebai H. Chamomile (Matricaria recutita ) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress. Biomed Pharmacother. 2017; 87: 153–159.
  • Kazemi M. Chemical composition and antimicrobial activity of essential oil of Matricaria recutita. Int J Food Prop. 2015; 18(8): 1784–1792.
  • Pauli A. α-Bisabolol from chamomile–A specific ergosterol biosynthesis inhibitor? Int J Aromather. 2006; 16(1): 21–25.
  • Cvetanović A, Švarc-Gajić J, Zeković Z, Savić S, Vulić J, Mašković P, Ćetković G. Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta. 2015; 242(3): 721–732.
  • Marino M, Bersani C, Comi G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int J Food Microbiol. 2001; 67(3): 187–195.
  • Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012; 3: 1–24.
  • Calo JR, Crandall PG, O'Bryan CA, Ricke SC. Essential oils as antimicrobials in food systems–a review. Food Control. 2015; 54: 111–119.
  • Mekonnen A, Yitayew B, Tesema A, Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int J Microbiol. 2016; Article ID 9545693.
  • Nogueira JCR, Diniz MFM, Lima EO. In vitro antimicrobial activity of plants in acute otitis externa. Braz J Otorhinolaryngol. 2008; 74(1): 118–124.
  • Fabri R, Nogueira M, Dutra L, Bouzada M, Scio E. Antioxidant and antimicrobial potential of Asteraceae species. Rev Bras de Plantas Medicinais. 2011; 13(2): 183–189.
  • Bensch K, Tiralongo J, Schmidt K, Matthias A, Bone K, Lehmann R, Tiralongo E. Investigations into the antiadhesive activity of herbal extracts against Campylobacter jejuni. Phytother Res. 2011; 25(8): 1125–1132.
  • Cwikla C, Schmidt K, Matthias A, Bone K, Lehmann R, Tiralongo E. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother Res. 2010; 24(5): 649–656.
  • Móricz AM, Szarka S, Ott PG, Héthelyi EB, Szoke E, Tyihák E. Separation and identification of antibacterial chamomile components using OPLC, bioautography and GC-MS. Med Chem. 2012; 8(1): 85–94.
  • Jesionek W, Móricz ÁM, Ott PG, Kocsis B, Horváth G, Choma IM. TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the Asteraceae family. J AOAC Int. 2015; 98(4): 857–861.
  • Hajaji S, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Jiménez IA, Bazzocchi IL, Valladares B, Akkari H, Lorenzo-Morales J, Piñero JE. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol Res. 2018; 117(9): 2855–2867.
  • Morales-Yuste M, Morillas-Márquez F, Martín-Sánchez J, Valero-López A, Navarro-Moll MC. Activity of (-)α-bisabolol against Leishmania infantum Phytomedicine. 2010; 17(3): 279–281.
  • Baldissera MD, Grando TH, de Souza CF, Cossetin LF, da Silva APT, Giongo JL, Monteiro SG. A nanotechnology based new approach for Trypanosoma evansi chemotherapy: In vitro and vivo trypanocidal effect of (-)-α-bisabolol. Exp Parasitol. 2016; 170: 156–160.
  • Hajaji S, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Jiménez IA, Bazzocchi IL, Valladares B, Pinero JE, Lorenzo-Morales J, Akkari H. Correlation of radical-scavenging capacity and amoebicidal activity of Matricaria recutita (Asteraceae). Exp Parasitol. 2017; 183: 212–217.
  • Caleja C, Ribeiro A, Barros L, Barreira JC, Antonio AL, Oliveira MBPP, Barreiro MF, Ferreira IC. Cottage cheeses functionalized with fennel and chamomile extracts: comparative performance between free and microencapsulated forms. Food Chem. 2016; 199: 720–726.
  • Caleja C, Barros L, Antonio AL, Ciric A, Barreira JC, Sokovic M, Oliveira MBP, Santos-Buelga C, Ferreira Isabel CFR. Development of a functional dairy food: exploring bioactive and preservation effects of chamomile (Matricaria recutita). J Funct Foods. 2015; 16: 114–124.
  • Caleja C, Barros L, Antonio AL, Oliveira MBP, Ferreira IC. A comparative study between natural and synthetic antioxidants: evaluation of their performance after incorporation into biscuits. Food Chem. 2017; 216: 342–346.
  • Aliheidari N, Fazaeli M, Ahmadi R, Ghasemlou M, Emam-Djomeh Z. Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film. Int J Biol Macromol. 2013; 56: 69–75.
  • Soković M, Glamočlija J, Marin PD, Brkić D, Van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro Molecules. 2010; 15(11): 7532–7546.
  • Queiroz MBR, Lucena G, Caldas ED, Silva M. Evaluation of the anti-inflammatory activity of gel with Matricaria recutita using a permeation enhancer. Rev Bras Farm. 2014; 95(2): 676–694.
  • Srivastava JK, Pandey M, Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci. 2009; 85(19-20): 663–669.
  • Bijak M, Saluk J, Tsirigotis-Maniecka M, Komorowska H, Wachowicz B, Zaczyńska E, Czarny A, Czechowski F, Nowak P, Pawlaczyk I. The influence of conjugates isolated from Matricaria chamomilla on platelets activity and cytotoxicity. Int J Biol Macromol. 2013; 61: 218–229.
  • Danaei N, Kokhdan EP, Manzouri L, Nikseresht M. The effect of bevacizumab and hydroalcohlic extract of Matricaria chamomilla on cell viability and nitric oxide (NO) production in HT-29; a human colorectal cancer cell line. Armaghane Danesh. 2016; 20(12): 1107–1118.
  • Jabri MA, Aissani N, Tounsi H, Sakly M, Marzouki L, Sebai H. Protective effect of chamomile (Matricaria recutita ) decoction extract against alcohol-induced injury in rat gastric mucosa. Pathophysiology. 2017; 24(1): 1–8.
  • Sebai H, Jabri MA, Souli A, Rtibi K, Selmi S, Tebourbi O, El-Benna J, Sakly M. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita ) decoction extract in rats. J Ethnopharmacol. 2014; 152(2): 327–332.
  • Yazdi H, Seifi A, Changizi S, Khori V, Hossini F, Davarian A, Jand Y, Enayati A, Mazandarani M, Nanvabashi F. Hydro-alcoholic extract of Matricaria recutita exhibited dual anti-spasmodic effect via modulation of Ca(2+) channels, NO and PKA(2)-kinase pathway in rabbit jejunum. Avicenna J Phytomed. 2017; 7(4): 334–344.
  • Achterrath-Tuckermann U, Kunde R, Flaskamp E, Isaac O, Thiemer K. Pharmacological investigations with compounds of chamomile. V. Investigations on the spasmolytic effect of compounds of chamomile and Kamillosan on the isolated guinea pig ileum. Planta Med. 1980; 39(1): 38–50.
  • Forster H, Niklas H, Lutz S. Antispasmodic effects of some medicinal plants. Planta Med. 1980; 40(12): 309–319.
  • Rotondo A, Serio R, Mulè F. Gastric relaxation induced by apigenin and quercetin: analysis of the mechanism of action. Life Sci. 2009; 85(1-2): 85–90.
  • Hagelauer D, Kelber O, Weiser D, Heinle H. Effects of STW 5 (Iberogast®) on prostaglandinF2α–induced contractions of ileum of mice in-vitro. Planta Med. 2006; 72(11): 280.
  • Murthy KS. Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol. 2006; 68: 345–374.
  • Maschi O, Cero ED, Galli GV, Caruso D, Bosisio E, Dell’Agli M. Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita J Agric Food Chem. 2008; 56(13): 5015–5020.
  • Amira S, Rotondo A, Mulè F. Relaxant effects of flavonoids on the mouse isolated stomach: structure-activity relationships. Eur J Pharmacol. 2008; 599(1-3): 126–130.
  • Gharzouli K, Holzer P. Inhibition of guinea pig intestinal peristalsis by the flavonoids quercetin, naringenin, apigenin and genistein. Pharmacology. 2004; 70(1): 5–14.
  • Guimarães MV, Melo IM, Adriano Araújo VM, Tenazoa Wong DV, Roriz Fonteles CS, Moreira Leal LK, Ribeiro RA, Lima V. Dry extract of Matricaria recutita (Chamomile) prevents ligature-induced alveolar bone resorption in rats via inhibition of tumor necrosis factor-α and interleukin-1β. J Periodontol. 2016; 87(6): 706–715.
  • Prasanna R, Ashraf EA, Essam MA. Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats. Can J Physiol Pharmacol. 2017; 95(1): 84–92.
  • Alouie A, Zehsaz F, Pouzesh Jadidi R. Effect of endurance exercise with Chamomila recutita leaves extract on liver superoxide dismutase activity and malondialdehyde levels in type 1 diabetic rats. Res Med. 2017; 40(4): 165–171.
  • Al-Musa H, Al-Hashem F. Hypoglycemic, hepato-renal and antioxidant potential effects of Chamomila recutita flowers ethanolic extract in streptozotocin-diabetic rats. Am J Pharmacol Toxicol. 2014; 9(1): 1–12.
  • Abdolmaleki F, Heidarianpour A. The response of serum glypican-4 levels and its potential regulatory mechanism to endurance training and chamomile flowers’ hydroethanolic extract in streptozotocin–nicotinamide-induced diabetic rats. Acta Diabetol. 2018; 55(9): 935–942.
  • Kato A, Minoshima Y, Yamamoto J, Adachi I, Watson AA, Nash RJ. Protective effects of dietary chamomile tea on diabetic complications. J Agric Food Chem. 2008; 56(17): 8206–8211.
  • Cemek M, Kağa S, Şimşek N, Büyükokuroğlu ME, Konuk M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla in streptozotocin-induced diabetic rats. J Nat Med. 2008; 62(3): 284–293.
  • Eddouks M, Lemhadri A, Zeggwagh N, Michel J. Potent hypoglycaemic activity of the aqueous extract of Chamaemelum nobile in normal and streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 2005; 67(3): 189–195.
  • Khan SS, Najam R, Anser H, Riaz B, Alam N. Chamomile tea: herbal hypoglycemic alternative for conventional medicine. Pak J Pharm Sci. 2014; 27(5): 1509–1514.
  • Prasanna R, Ashraf EA, Essam MA. Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats. Can J Physiol Pharmacol. 2017; 95(1): 84–92.
  • Hwang SH, Wang Z, Guillen Quispe YN, Lim SS. Evaluation of aldose reductase, protein glycation, and antioxidant inhibitory activities of bioactive flavonoids in Matricaria recutita and their structure-activity relationship. J Diabetes Res. 2018; Article ID 3276162.
  • Rajaei M, Asadi I. Fibrinolytic effects of Matricaria chamomila in preventing peritoneal adhesions. Bull Env Pharmacol Life Sci. 2014; 3(5): 40–45.
  • Mao JJ, Xie SX, Keefe JR, Soeller I, Li QS, Amsterdam JD. Long-term chamomile (Matricaria chamomilla) treatment for generalized anxiety disorder: a randomized clinical trial. Phytomedicine. 2016; 23(14): 1735–1742.
  • Amsterdam JD, Li Y, Soeller I, Rockwell K, Mao JJ, Shults J. A randomized, double-blind, placebo-controlled trial of oral Matricaria recutita (chamomile) extract therapy for generalized anxiety disorder. Sci Rep. 2009; 29(4): 378–382.
  • Amsterdam JD, Shults J, Soeller I, Mao JJ, Rockwell K, Newberg AB. Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Alt Ther Health Med. 2012; 18(5): 44–49.
  • Zargaran A, Borhani-Haghighi A, Salehi-Marzijarani M, Faridi P, Daneshamouz S, Azadi A, Sadeghpour H, Sakhteman A, Mohagheghzadeh A. Evaluation of the effect of topical chamomile (Matricaria chamomilla) oleogel as pain relief in migraine without aura: a randomized, double-blind, placebo-controlled, crossover study. Neurol Sci. 2018; 39(8): 1345–1353.
  • Niederhofer H. Observational study: Matricaria chamomilla may improve some symptoms of attention-deficit hyperactivity disorder. Phytomedicine. 2009; 16(4): 284–286.
  • Tavakoli Ardakani M, Ghassemi S, Mehdizadeh M, Mojab F, Salamzadeh J, Ghassemi S, Hajifathali A. Evaluating the effect of Matricaria recutita and Mentha piperita herbal mouthwash on management of oral mucositis in patients undergoing hematopoietic stem cell transplantation: a randomized, double blind, placebo controlled clinical trial. Complement Ther Med. 2016; 29: 29–34.
  • Fidler P, Loprinzi CL, O'Fallon JR, Leitch JM, Lee JK, Hayes DL, Novotny P, Clemens-Schutjer D, Bartel J, Michalak JC. Prospective evaluation of a chamomile mouthwash for prevention of 5-FU-induced oral mucositis. Cancer. 1996; 77(3): 522–525.
  • Gomes VTS, Nonato Silva Gomes R, Gomes MS, Joaquim WM, Lago EC, Nicolau RA. Effects of Matricaria recutita (L.) in the treatment of oral mucositis. Sci World J. 2018; Article ID 4392184.
  • Batista ALA, Lins RDAU, de Souza Coelho R, do Nascimento Barbosa D, Belém NM, Celestino FJA. Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement Ther Clin Pract. 2014; 20(1): 93–98.
  • Pourabbas R, Delazar A. The effect of German chamomile mouthwash on dental plaque and gingival inflammation. Iran J Pharm Res. 2010; 4(2): 105–109.
  • Lins R, Vasconcelos F, Leite R, Coelho-Soares R, Barbosa D. Clinical evaluation of mouthwash with extracts from aroeira (Schinus terebinthifolius) and chamomile (Matricaria recutita) on plaque and gingivitis. Rev Bras de Plantas Medicinais. 2013; 15(1): 112–120.
  • Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015; 38(2): 163–170.
  • Kermanian S, Mozaffari-Khosravi H, Dastgerdi G, Zavar-Reza J, Rahmanian M. The effect of chamomile tea versus black tea on glycemic control and blood lipid profiles in depressed patients with type 2 diabetes: a randomized clinical trial. J Nutr Foof Secur. 2018; 3(3): 157–166.
  • Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016; 32(1): 66–72.
  • Zemestani M, Rafraf M, Asghari-Jafarabadi M. Effects of chamomile tea on inflammatory markers and insulin resistance in patients with type 2 diabetes mellitus. Trends Gen Pract. 2018; 1(3): 1–6.
  • Kaseb F, Yazdanpanah Z, Biregani AN, Yazdi NB, Yazdanpanah Z. The effect of chamomile (Matricaria recutita) infusion on blood glucose, lipid profile and kidney function in type 2 diabetic patients: a randomized clinical trial. Prog Food Nutr Sci. 2018; 20(S1): 110–118.
  • Hajizadeh-Sharafabad F, Varshosaz P, Jafari-Vayghan H, Alizadeh M, Maleki V. Chamomile (Matricaria recutita) and diabetes mellitus, current knowledge and the way forward: a systematic review. Complement Ther Med. 2020; Article ID 102284.
  • Sharifi F, Simbar M, Mojab F, Majd HA. Comparison of the effects of Matricaria chamomila (chamomile) extract and mefenamic acid on the intensity of premenstrual syndrome. Complement Ther Clin Pract. 2014; 20(1): 81–88.
  • Radfar S, Shahoie R, Noori B, Jalilian F, Nasab LH. Comparative study on the effect of Matricaria chamomile and Achillea millefolium capsules on primary dysmenorrhea intensity of dormitory students of kurdistan university of medical sciences, 2018. J Pharm Res Int. 2018; 25(3): 1–7.
  • Saghafi N, Rhkhshandeh H, Pourmoghadam N, Pourali L, Ghazanfarpour M, Behrooznia A, Vafisani F. Effectiveness of Matricaria chamomilla (chamomile) extract on pain control of cyclic mastalgia: a double-blind randomised controlled trial. J Obstetr Gynaecol. 2018; 38(1): 81–84.
  • Kabiri M, Kamalinejad M, Bioos S, Shariat M, Sohrabvand F. Comparative study of the effects of chamomile (Matricaria chamomilla) and cabergoline on idiopathic hyperprolactinemia: a pilot randomized controlled trial. Iran J Pharm Res. 2019; 18(3): 1612–1621.
  • Aghili Khorasani M. Makhzan al advieh. Tehran: Bavardaran Press, 2001.
  • Sharifi H, Minaie MB, Qasemzadeh MJ, Ataei N, Gharehbeglou M, Heydari M. Topical use of Matricaria recutita (chamomile) oil in the treatment of monosymptomatic enuresis in children: a double-blind randomized controlled trial. Evid Based Complement Alternat Med. 2017; 22(1): 12–17.
  • Comalada M, Ballester I, Bailon E, Sierra S, Xaus J, Gálvez J, de Medina FS, Zarzuelo A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure–activity relationship. Biochem Pharmacol. 2006; 72(8): 1010–1021.
  • Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999; 20(10): 1945–1952.
  • Park JS, Kim DK, Shin HD, Lee HJ, Jo HS, Jeong JH, Choi YL, Lee CJ, Hwang SC. Apigenin regulates interleukin-1β-induced production of matrix metalloproteinase both in the knee joint of rat and in primary cultured articular chondrocytes. Biomol Ther. 2016; 24(2): 163–170.
  • Flemming M, Kraus B, Rascle A, Jürgenliemk G, Fuchs S, Fürst R, Heilmann J. Revisited anti-inflammatory activity of matricine in vitro: comparison with chamazulene. Fitoterapia. 2015; 106: 122–128.
  • Salehcheh M, Safari O, Khodayar MJ, Mojiri-Forushani H, Cheki M. The protective effect of herniarin on genotoxicity and apoptosis induced by cisplatin in bone marrow cells of rats. Drug Chem Toxicol. 2022; 45(4): 1470–1475.
  • Safayhi H, Sabieraj J, Sailer ER, Ammon HPT. Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation. Planta Med. 1994; 60(5): 410–413.
  • Chang X, He H, Zhu L, Gao J, Wei T, Ma Z, Yan T. Protective effect of apigenin on Freund’s complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-κB pathway. Chem Biol Interact. 2015; 236: 41–46.
  • Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-Dos-Santos R, Soares MB. Effects of umbelliferone in a murine model of allergic airway inflammation. Eur J Pharmacol. 2009; 609(1): 126–131.
  • Sánchez M, González-Burgos E, Gómez-Serranillos MP. The pharmacology and clinical efficacy of Matricaria recutita: a systematic review of in vitro, in vivo studies and clinical trials. Food Rev Int. 2022; 10(8): 1668–1702.
  • Cavalcante HAO, Silva-Filho SE, Wiirzler LAM, Cardia GFE, Uchida NS, Silva-Comar FMS, Bersani-Amado CA, Cuman RKN. Effect of (-)-α-bisabolol on the inflammatory response in systemic infection experimental model in C57BL/6 mice. Inflammation. 2020; 43(1): 193–203.
  • Xu C, Sheng S, Dou H, Chen J, Zhou K, Lin Y, Yang H. α-Bisabolol suppresses the inflammatory response and ECM catabolism in advanced glycation end products-treated chondrocytes and attenuates murine osteoarthritis. Int Immunopharmacol. 2020; Article ID 106530.
  • D'Almeida APL, Pacheco de Oliveira MT, de Souza ÉT, de Sá Coutinho D, Ciambarella BT, Gomes CR, Terroso T, Guterres SS, Pohlmann AR, Silva PM, Martins MA, Bernardi A. α-Bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. Int J Nanomedicine. 2017; 12: 4479–4491.
  • Rocha NF, Rios ER, Carvalho AM, Cerqueira GS, Lopes Ade A, Leal LK, Dias ML, de Sousa DP, de Sousa FC. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2011; 384(6): 525–533.
  • Pereira da Cruz R, Sampaio de Freitas T, Socorro Costa MD, Lucas Dos Santos AT, Ferreira Campina F, Pereira RLS, Bezerra JWA, Quintans-Júnior LJ, De Souza Araújo AA, Júnior JPS, Iriti M, Varoni EM, Menezes IRA, Melo Coutinho HD, Morais-Braga MFB. Effect of α-bisabolol and its β-cyclodextrin complex as tetk and nora efflux pump inhibitors in Staphylococcus aureus Antibiotics. 2020; 9(1): 1–8.
  • Hajaji S, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Jiménez IA, Bazzocchi IL, Valladares B, Akkari H, Lorenzo-Morales J, Piñero JE. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol Res. 2018; 117(9): 2855–2867.
  • Anter J, Romero-Jiménez M, Fernández-Bedmar Z, Villatoro-Pulido M, Analla M, Alonso-Moraga A, Muñoz-Serrano A. Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J Med Food. 2011; 14(3): 276–283.
  • Aron de Miranda HA, Gonçalves JCR, Cruz JS, Araújo DAM. Evaluation of the sesquiterpene (−)-α-bisabolol as a novel peripheral nervous blocker. Neurosci Lett. 2010; 472(1): 11–15.
  • El-Lakany SA, Abd-Elhamid AI, Kamoun EA, El-Fakharany EM, Samy WM, Elgindy NA. α-Bisabolol-loaded cross-linked zein nanofibrous 3d-scaffolds for accelerating wound healing and tissue regeneration in rats. Int J Nanomedicine. 2019; 14: 8251–8270.
  • Fernandes MYD, Carmo MRSD, Fonteles AA, Neves JCS, Silva ATAD, Pereira JF, Ferreira EO, Lima NMR, Neves KRT, Andrade GM. (-)-α-Bisabolol prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Eur J Pharmacol. 2019; 842: 270–280.
  • Sampaio TL, Menezes RR, da Costa MF, Meneses GC, Arrieta MC, Chaves Filho AJ, de Morais GB, Libório AB, Alves RS, Evangelista JS, Martins AM. Nephroprotective effects of (−)-α-bisabolol against ischemic-reperfusion acute kidney injury. Phytomedicine. 2016; 23(14): 1843–1852.
  • Fukunaga E, Hirao Y, Ogata‐Ikeda I, Nishimura Y, Seo H, Oyama Y. Bisabololoxide A, one of the constituents in german chamomile extract, attenuates cell death induced by calcium overload. Phytother Res. 2014; 28(5): 685–691.
  • Ogata-Ikeda I, Seo H, Kawanai T, Hashimoto E, Oyama Y. Cytotoxic action of bisabololoxide A of German chamomile on human leukemia K562 cells in combination with 5-fluorouracil. Phytomedicine. 2011; 18(5): 362–365.
  • Ogata I, Kawanai T, Hashimoto E, Nishimura Y, Oyama Y, Seo H. Bisabololoxide A, one of the main constituents in German chamomile extract, induces apoptosis in rat thymocytes. Arch Toxicol. 2010; 84(1): 45–52.
  • Kobayashi Y, Suzuki A, Kobayashi A, Kasai A, Ogata Y, Kumada Y. Suppression of sensory irritation by chamomile essential oil and its active component-bisabololoxide A. Acta Hortic. 2007; 749: 163–174.
  • Fang K, Wang L, Chen L, Liu T, Fang Z. Antiproliferative effects of matricine in gemcitabine-resistant human pancreatic carcinoma cells are mediated via mitochondrial-mediated apoptosis, inhibition of cell migration, invasion suppression, and mammalian target of rapamycin (mTOR)-TOR/PI3K/AKT signalling pathway. Med Sci Monit. 2019; 25: 2943–2949.
  • Capuzzo A, Occhipinti A, Maffei ME. Antioxidant and radical scavenging activities of chamazulene. Nat Prod Res. 2014; 28(24): 2321–2323.
  • Querio G, Antoniotti S, Foglietta F, Bertea CM, Canaparo R, Gallo MP, Levi R. Chamazulene attenuates ROS levels in bovine aortic endothelial cells exposed to high glucose concentrations and hydrogen peroxide. Front Physiol. 2018; 9: 1–7.
  • Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T. Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int Immunopharmacol. 2011; 11(9): 1150–1159.
  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem Pharmacol. 1999; 58(5): 759–765.
  • Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-κB through the suppression of p65 phosphorylation. J Immunol. 2007; 179(10): 7121–7127.
  • Soliman KF, Mazzio EA. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med. 1998; 218(4): 390–397.
  • Rudan I, Sidhu S, Papana A, Meng SJ, Xin-Wei Y, Wang W, Campbell-Page RM, Demaio AR, Nair H, Sridhar D, Theodoratou E, Dowman B, Adeloye D, Majeed A, Car J, Campbell H, Wang W, Chan KY. Prevalence of rheumatoid arthritis in low–and middle–income countries: a systematic review and analysis. J Glob Health. 2015; 5(1): 1–10.
  • Romanova D, Vachalkova A, Cipak L, Ovesna Z, Rauko P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma. 2001; 48(2): 104–107.
  • Kuo ML, Lee KC, Lin JK. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat Res. 1992; 270(2): 87–95.
  • Van Dross R, Xue Y, Knudson A, Pelling JC. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J Nutr. 2003; 133(11 Suppl 1): 3800S–3804S.
  • Birt DF, Mitchell DL, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skill carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997; 17(1A): 85–91.
  • Dong J, Qiu J, Wang J, Li H, Dai X, Zhang Y, Wang X, Tan W, Niu X, Deng X, Zhao S. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol Lett. 2013; 338(2): 124–131.
  • Xia F, Li X, Wang B, Gong P, Xiao F, Yang M, Zhang L, Song J, Hu L, Cheng M, Sun C, Feng X, Lei L, Ouyang S, Liu ZJ, Li X, Gu J, Han W. Combination therapy of LysGH15 and apigenin as a new strategy for treating pneumonia caused by Staphylococcus aureus. Appl Environ Microbiol. 2016; 82(1): 87–94.
  • Kuo CH, Weng BC, Wu CC, Yang SF, Wu DC, Wang YC. Apigenin has anti-atrophic gastritis and anti-gastric cancer progression effects in Helicobacter pylori-infected Mongolian gerbils. J Ethnopharmacol. 2014; 151(3): 1031–1039.
  • Koo H, Schobel B, Scott-Anne K, Watson G, Bowen W, Cury J, Rosalen PL, Park YK. Apigenin and tt-farnesol with fluoride effects on mutans biofilms and dental caries. J Dent Res. 2005; 84(11): 1016–1020.
  • Koo H, Hayacibara M, Schobel B, Cury J, Rosalen P, Park Y, Vacca-Smith AM, Bowen WH. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 2003; 52(5): 782–789.
  • Ohemeng K, Schwender C, Fu K, Barrett J. DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorganic Med Chem Lett. 1993; 3(2): 225–230.
  • Wang M, Firrman J, Zhang L, Arango-Argoty G, Tomasula P, Liu L, Xiao W, Yam K. Apigenin impacts the growth of the gut microbiota and alters the gene expression of Enterococcus. Molecules. 2017; 22(8): 1–22.
  • Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res. 2014; 109: 30–41.
  • Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A, Koike K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology. 2014; 462-463: 42–48.
  • Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, Li X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 2015; 7(4): 1613–1626.
  • Hakobyan A, Arabyan E, Avetisyan A, Abroyan L, Hakobyan L, Zakaryan H. Apigenin inhibits African swine fever virus infection in vitro. Arch Virol. 2016; 161(12): 3445–3453.
  • Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res. 2018; 18(1): 1–9.
  • Fonseca-Silva F, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE. Effect of apigenin on Leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J Nat Prod. 2015; 78(4): 880–884.
  • Ren B, Qin W, Wu F, Wang S, Pan C, Wang L, Zeng B, Ma S, Liang J. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol. 2016; 773: 13–23.
  • Mao XY, Yu J, Liu ZQ, Zhou HH. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway. Int J Clin Exp Med. 2015; 8(9): 15506–15513.
  • Eisenbarth GS. Update in type 1 diabetes. J Clin Endocrinol Metab. 2007; 92(7): 2403–2407.
  • Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Arthritis Rheum. 1995; 38(4): 551–558.
  • Kang HK, Ecklund D, Liu M, Datta SK. Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther. 2009; 11(2): 1–13.
  • Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 2007; 25: 419–441.
  • Verbeek R, van Tol EA, van Noort JM. Oral flavonoids delay recovery from experimental autoimmune encephalomyelitis in SJL mice. Biochem Pharmacol. 2005; 70(2): 220–228.
  • O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci. 2007; 104(5): 1604–1609.
  • Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006; 113(14): 1807–1816.
  • Liu HJ, Fan YL, Liao HH, Liu Y, Chen S, Ma ZG, Zhang N, Yang Z, Deng W, Tang QZ. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem. 2017; 428(1-2): 9–21.
  • Mascaraque C, González R, Suárez MD, Zarzuelo A, de Medina FS, Martínez-Augustin O. Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. Br J Nutr. 2015; 113(4): 618–626.
  • Rahimi R, Shams-Ardekani MR, Abdollahi M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J Gastroenterol. 2010; 16(36): 4504–4514.
  • Ghiu A, Schwiebs A, Radeke HH, Avram S, Zupko I, Bor A, Pavel IZ, Dehelean CA, Oprean C, Bojin F, Farcas C, Soica C, Duicu O, Danciu C. A comprehensive assessment of apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. Nutrients. 2019; 11(4): 1–19.
  • Lefort ÉC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res. 2013; 57(1): 126–144.
  • Birt DF, Walker B, Tibbels MG, Bresnick E. Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis. 1986; 7(6): 959–963.
  • Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res. 2020; 34(8): 1812–1828.
  • Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, Gupta S. Blockade of β-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res. 2007; 67(14): 6925–6935.
  • Lee WJ, Chen WK, Wang CJ, Lin WL, Tseng TH. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 2008; 226(2): 178–191.
  • Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer Res. 2000; 87(4): 595–600.
  • Tseng TH, Chien MH, Lin WL, Wen YC, Chow JM, Chen CK, Kuo TC, Lee WJ. Inhibition of MDA‐MB‐231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation‐mediated p21WAF1/CIP1 expression. Environ Toxicol. 2017; 32(2): 434–444.
  • Lee HH, Jung J, Moon A, Kang H, Cho H. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int J Mol Sci. 2019; 20(13): 1–16.
  • Zhang S, Xu S, Duan H, Zhu Z, Yang Z, Cao J, Zhao Y, Huang Z, Wu Q, Duan J. A novel, highly-water-soluble apigenin derivative provides neuroprotection following ischemia in male rats by regulating the ERK/Nrf2/HO-1 pathway. Eur J Pharmacol. 2019; 855: 208–215.
  • Wang G, Li W, Lu X, Bao P, Zhao X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complicat. 2012; 26(4): 259–265.
  • Kotanidou A, Xagorari A, Bagli E, Kitsanta P, Fotsis T, Papapetropoulos A, Roussos C. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med. 2002; 165(6): 818–823.
  • Song YS, Park CM. Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells. Food Chem Toxicol. 2014; 65: 70–75.
  • Zhang T, Wu W, Li D, Xu T, Zhu H, Pan D, Zhu S, Liu Y. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int Immunopharmacol. 2014; 20(2): 346–351.
  • Yang JT, Qian LB, Zhang FJ, Wang J, Ai H, Tang LH, Wang HP. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway. J Cardiovasc Pharmacol. 2015; 65(4): 349–356.
  • Liao PH, Hung LM, Chen YH, Kuan YH, Zhang FBY, Lin RH, Shih HC, Tsai SK, Huang SS. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ J. 2011; 75(2): 443–450.
  • He D, Ma X, Chen Y, Cai Y, Ru X, Bruce IC, Xia Q, Shi G, Jin J. Luteolin inhibits pyrogallol‐induced apoptosis through the extracellular signal‐regulated kinase signaling pathway. FEBS J. 2012; 279(10): 1834–1843.
  • Liu L, Ma H, Yang N, Tang Y, Guo J, Tao W. A series of natural flavonoids as thrombin inhibitors: structure-activity relationships. Thromb Res. 2010; 126(5): e365–e378.
  • Choi JH, Kim YS, Shin CH, Lee HJ, Kim S. Antithrombotic activities of luteolin in vitro and in vivo. J Biochem Mol Toxicol. 2015; 29(12): 552–558.
  • Kim HJ, Lee W, Yun JM. Luteolin inhibits hyperglycemia‐induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes. Phytother Res. 2014; 28(9): 1383–1391.
  • Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta. 1995; 235(2): 207–219.
  • Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E–deficient mice. J Clin Invest. 1999; 103(11): 1597–1604.
  • Juźwiak S, Wójcicki J, Mokrzycki K, Marchlewicz M, Białecka M, Wenda-Rózewicka L, Gawrońska-Szklarz B, Droździk M. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep. 2005; 57(5): 604–609.
  • Kamada C, da Silva EL, Ohnishi-Kameyama M, Moon JH, Terao J. Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radic Res. 2005; 39(2): 185–194.
  • Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M. Reduced progression of atherosclerosis in apolipoprotein E–deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol. 1997; 17(11): 2744–2752.
  • Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, Kobayashi M, Kanayama M, Uchida K, Terao J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008; 283(14): 9424–9434.
  • Enkhmaa B, Shiwaku K, Katsube T, Kitajima K, Anuurad E, Yamasaki M, Yamane Y. Mulberry (Morus alba) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr. 2005; 135(4): 729–734.
  • Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Umbelliferone, an antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010; 120(3): 825–830.
  • Kim JS, Kim JC, Shim SH, Lee EJ, Jin WY, Bae K, Son KH, Kim HP, Kang SS, Chang HW. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch Pharm Res. 2006; 29(8): 617–623.
  • Rezaee R, Behravan E, Behravan J, Soltani F, Naderi Y, Emami B, Iranshahi M. Antigenotoxic activities of the natural dietary coumarins umbelliferone, herniarin and 7-isopentenyloxy coumarin on human lymphocytes exposed to oxidative stress. Drug Chem Toxicol. 2014; 37(2): 144–148.
  • Lino C, Taveira M, Viana G, Matos F. Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: coumarin and umbelliferone. Phytother Res. 1997; 11(3): 211–215.
  • Rauf A, Khan R, Khan H, Pervez S, Pirzada AS. In vivo antinociceptive and anti-inflammatory activities of umbelliferone isolated from Potentilla evestita. Nat Prod Res. 2014; 28(17): 1371–1374.
  • Mazimba O. Umbelliferone: sources, chemistry and bioactivities review. Bull Fac Pharm Cairo Univ. 2017; 55(2): 223–232.
  • Ramu R, Shirahatti PS, Zameer F, Ranganatha LV, Prasad MN. Inhibitory effect of banana (Musa var. Nanjangud rasa bale) flower extract and its constituents umbelliferone and lupeol on α-glucosidase, aldose reductase and glycation at multiple stages. S Afr J Bot. 2014; 95: 54–63.
  • Gao D, Zhang YL, Xu P, Lin YX, Yang FQ, Liu JH, Zhu HW, Xia ZN. In vitro evaluation of dual agonists for PPARγ/β from the flower of Edgeworthia gardneri (wall.) Meisn. J Ethnopharmacol. 2015; 162: 14–19.
  • Ramesh B, Pugalendi K. Impact of umbelliferone (7-hydroxycoumarin) on hepatic marker enzymes in streptozotocin diabetic rats. Indian J Pharmacol. 2006; 38(3): 209–210.
  • Sim MO, Ham JR, Lee HI, Seo KI, Lee MK. Long-term supplementation of umbelliferone and 4-methylumbelliferone alleviates high-fat diet induced hypertriglyceridemia and hyperglycemia in mice. Chem Biol Interact. 2014; 216: 9–16.
  • Yu SM, Hu DH, Zhang JJ. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol Med Rep. 2015; 12(3): 3869–3873.
  • Kielbus M, Skalicka-Wozniak K, Grabarska A, Jeleniewicz W, Dmoszynska-Graniczka M, Marston A, Polberg K, Gawda P, Klatka J, Stepulak A. 7-Substituted coumarins inhibit proliferation and migration of laryngeal cancer cells in vitro. Anticancer Res. 2013; 33(10): 4347–4356.
  • Mousavi SH, Davari AS, Iranshahi M, Sabouri-Rad S, Tayarani Najaran Z. Comparative analysis of the cytotoxic effect of 7-prenyloxycoumarin compounds and herniarin on MCF-7 cell line. Avicenna J Phytomed. 2015; 5(6): 520–530.
  • Salehcheh M, Safari O, Khodayar MJ, Mojiri-Forushani H, Cheki M. The protective effect of herniarin on genotoxicity and apoptosis induced by cisplatin in bone marrow cells of rats. Drug Chem Taxicol. 2022; 45(4): 1470–1475.
  • Haghighitalab A, Matin MM, Bahrami AR, Iranshahi M, Haghighi F, Porsa H. Enhancement of cisplatin cytotoxicity in combination with herniarin in vitro. Drug Chem Toxicol. 2014; 37(2): 156–162.
  • Carvalho A, Silva D, Silva T, Scarcelli E, Manhani M. Evaluation of the antibacterial activity of ethanolic and cyclohexane extracts of chamomile flowers (Matricaria chamomilla). Rev Bras Plant Med. 2014; 16(3): 521–526.