Research Journal of Pharmacognosy (RJP) 5(2), 2018: 1-7 Received: 10 Dec 2017 Accepted: 17 Feb 2018 Published online: 13 Mar 2018 DOI: 10.22127/RJP.2018.58474

Starting Dose Calculation for Medicinal Plants in Animal Studies; Recommendation of a Simple and Reliable Method

Amirsaeed Hosseini^{1,2}, Seyed Afshin Shorofi^{1,3}, Ali Davoodi⁴, Mohammad Azadbakht^{4*}

¹Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran.

²School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

³Adjunct Research Fellow, Flinders University, Adelaide, Australia.

⁴Department of Pharmacognosy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.

Abstract

Background and purpose: Research studies indicate that almost 80% of the present day drugs are derived directly or indirectly from medicinal plants. The estimation of a safe starting dose is a concern when a new substance is to be investigated including medicinal plants, in clinical and laboratory studies. This study was intended to explore a simple and reliable method of calculating the starting dose for animal studies. Actually, the method helps to calculate the accurate animal dose based on Persian medicine. **Methods:** After the botanical names were identified, the dosages of the plants recommended in Persian medicine (PM) were converted to gram unit. Then the body surface area normalization method (BSA) was used for an allometric dose translation. **Results:** Ninety eight plants were identified and their effective parts and dosages were determined based Persian medicine. **Conclusions:** Dosing calculations for drugs could be performed based both on BSA method and experiences of ancient Persian scholars.

Keywords: animal study; calculation; medicinal plants; starting dose

Citation: Hosseini A, Shorofi SA, Davoodi A, Azadbakht M. Starting dose calculation for medicinal plants in animal studies; recommendation of a simple and reliable method. Res J Pharmacogn. 2018; 5(2): 1-7.

Introduction

In the Persian and modern medicine, many pharmaceutical products have been apparently effective in the treatment of diseases and could reduce the signs and symptoms of ailments. It is of importance to note that the long-term use of these medications can lead to detrimental effects [1]. In addition, the high cost of medications, patients' inadequate response, drug resistance, and emerging diseases such as Ebola virus disease, Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) must also be taken into account [2,3]. These are grounds for claiming that the discovery and development of new drugs tends to continue to preserve public health.

Fabricant and Farnsworth (2001) have identified

122 compounds of described chemical structures, derived from only 94 plant species. It is noteworthy to report that, based on data collected by Fabricant and Farnsworth, 80% of these plantderived compounds 'have had an ethnomedical use identical or related to the current use of the active elements of the plant' [4]. Research studies have indicated that almost 80% of the present day drugs are derived directly or indirectly from medicinal plants [5-7]. A strategy for the discovery of new drugs is, therefore, to scientifically examine the plants with medicinal use in traditional systems of medicine [8, 9]. There has been a long-standing relationship between traditional medicine and pharmacognosy as the science of drug discovery based on natural

[°]Corresponding author: MAzadbakht@mazums.ac.ir, Azadbakhtm@hotmail.com

© 2018. Open access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/)

products. Reverse pharmacognosy has facilitated the development of drugs from natural sources, from molecules to organisms containing them, with the use of natural products databases and computer tools. Reverse pharmacognosy is a process of transformation of Persian medicine (PM) into modern medicine [10, 11].

The estimation of a safe starting dose is a concern, when a new substance is to be investigated, including medicinal plants, in clinical and laboratory studies. A common method to estimate human starting dose is to calculate one tenth of the lethal dose (LD_{10}) [12]. In addition to conventional methods ancient medical references, used by ancient physicians for centuries, can be reliable sources to determine a safe human dose and be a basis for the initial dosage calculation in animal studies. To this end, the species of medicinal plants delineated in ancient sources have to be identified and their botanical names should be detected, followed by finding a way to convert the amounts specified in ancient sources to doses acceptable for use in human and animal studies. PM is one of the most important ancient medical systems, and builds on four elements of water, earth, fire, and air. Ancient Persian physicians are believed to have had an outstanding role in the advancement of medicine and their masterpieces can constitute a basis for relevant studies in contemporary medicine [6, 13]. This manuscript is intended to present the botanical name of some popular medicinal plants in PM and convert the amounts specified in ancient sources to doses acceptable for use in clinical and laboratory studies so as to introduce a simple and reliable method for dosage calculation in medicinal plants.

Material and Methods Ethical considerations

The present study was approved by the Medical Research and Ethical Committee of Mazandaran University of Medical Sciences, Sari, Iran (approval no. IR.MAZUMS.REC.95-1325).

Botanical identification of plants described in PM

An important question to answer is what the botanical name of a traditional plant which some properties have been attributed in ancient Persian sources is. Any mistake in this phase can lead to very serious consequences as properties of one plant may be wrongly ascribed to another one. Steps in botanical name identification in PM have been depicted in figure 1.

Traditional name, effective parts, and recommended dosage of the plants were set based on "Makhzan-ol Advieh", a reference book in PM, written by Hakim Aghili Khorasani (18th century) [14].

Conversion of traditional units to gram

The traditional units were converted to gram amounts (table 1), and were then recorded in table 3.

 Table 1. Conversion of traditional units to gram

Traditional unit	Gram		
"Methghal"	4.547958		
"Derham"	3.183571		
"Dantraag"	0.5306		
"Aoghiyeh"	34.10969		
"Ghirat"	0.2653		
"Ratl"	409.31627		

Conversion method

In this study, the body surface area normalization method was used for an allometric dose translation, approved by U.S Food & Drug Administration (FDA) [15, 16].

Human equivalent dose (HED) (mg/kg) = Animal dose (mg/kg) multiplied by Animal km/ Human km

According to figure 1, Km is a dose conversion factor to convert dose in mg/kg to dose in mg/m² [17]. Table 2 has illustrated the km values for human and various animal species.

Table 2. Conversion of animal doses to HED based on BSA(Body Surface Area)*

Species	Weight (kg)	BSA	K factor
Human adult	60	1.6	37
Human child	20	0.8	25
Baboon	12	0.6	20
Dog	10	0.5	20
Monkey	3	0.24	12
Rabbit	1.8	0.15	12
Guinea pig	0.4	0.05	8
Rat	0.15	0.025	6
Hamster	0.08	0.02	5
Mouse	0.02	0.007	3

*Adapted from Ref [16].

Results and Discussion

Ninety eight plants were identified and their effective parts and dosages were determined (table 3). These data and conversion method can make it possible to obtain effective doses in animal studies. For instance, it is has been intended to examine the effects of *Boswellia carterii* on memory in mouse. In such a case, the

question of how to determine the starting dose of *Boswellia carterii* will become important.

Findings in the literature on PM indicate that a daily dose of *Boswellia carterii* for an adult human with the body weight of 60 kg could be 1.5917855 g (table 3) and Km factors are 37 and 3 for human and mice, respectively (table 2). In the first step, the daily dose was converted from g/60 kg to mg/ kg:

60 1.5917855 1 x X= 1.5917855 / 60= 0.02653g/kg = 26.53mg/kg

The second step is used to normalize the dose of *Boswellia carterii* to body surface area:

(Human Equivalent Dose) (Mg/kg) = Animal dose (mg/kg) ×Animal km/ Human km

 $26.53(mg/kg) = Animal dose (mg/kg) \times 3/37$ Animal dose = 327.2 (mg/kg)

As a final result, 327.2 mg/kg is the computed dose for mice. The same approach could be used to estimate starting doses in other plants and animals.

Despite all disagreements about drug dosage conversion and calculation of effective doses, dosing calculations for drugs based on BSA, is still the most appropriate method for drug dose calculation [16]. Medical research is trying to improve health outcomes for all patients, and it therefore might be inevitable to rely on medicinal plants that have their roots in ancient medicine with a long history of use. This manuscript has tended to merge the BSA method of drug dose calculation with the knowledge of PM in order to recommend it to medical researchers.

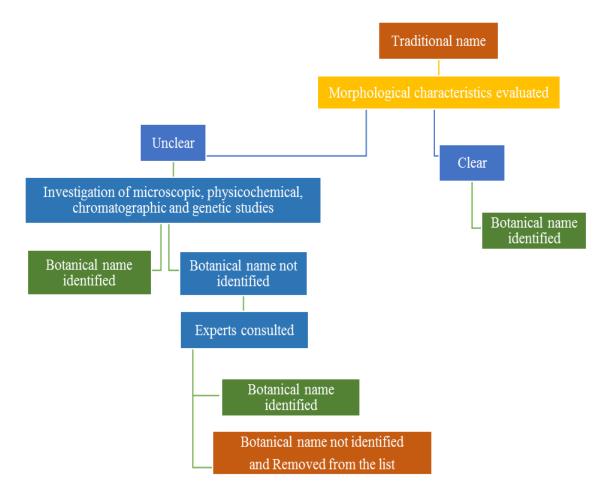


Figure 1. Steps in botanical name identification in PM

No.	B. Medicinal plants and the doses of their effect Botanical name	Traditional name	Effective part	Dose	Dose in PM (g/day)	
1	Acorus calamus L.	Vaj	Rhizome	4.547958		
2	Adiantum capillus-veneris L.	Baresiāvashān (ā = a:)	Aerial parts	Decoction Dried	Up to: 63.67142 Up to: 22.28499	
3	Agrimonia eupatoria L.	Qāfeth	Flower	Decoction Dried	22.284997 9.550713	
4	Alhagi maurorum Medik.	Taranjabin	Manna	13.643874 - 31.835706		
5	Allium cepa L.	Basal	Bulb		4.547958	
6	Althaea officinalis L.	Khatmi	Flower, seed, Root	Decoction Dried	136.43874 4.547958	
7	Anethum graveolens L.	Shebat	Seed, aerial parts		25.468568	
8	Apium graveolens L.	Karafs	Arial parts Root (decoction)	juice Dried	47.753565 9.550713 15.917855	
			Seed	3.183571		
9	Arnebia euchroma (Royle) I.M.Johnst.	Abukhalsā	Root		6.367142	
0	Artemisia absinthium L.	Afsantin	Aerial parts	Decoction Dried	Up to: 6.367142 4.547958	
1	Asparagus officinalis L.	Halion	Seed		9.550713	
2	Asarum europaeum L.	Asāroon	Rhizome		958 - 13.643874	
4	Astragalus gumifer Labill. Berberis vulgaris L.	Katirā Ambarbāris	Gum Fruit	3.183: Juice Dried	571- 15.917855 90.95916 68.21937	
17	Derberis valgaris E.	7 mildar bar is	Seed		13.643874	
5	Boswellia carteri Birdw.	Kondor	Oleo gum resin	1.5917855		
6	Brassica napus L.	Shaljam	Seed, root, leaf	6.367142		
7	Brassica nigra (L.) K.Koch	Khardal	Seed	Crushed Uncrushed	9.550713 15.917855	
18	Brassica oleracea L.	Kornob/Karanb	Fresh leaves		9.550713	
19	Cannabis sativa L.	Ghennab	Aerial parts	Up to 3.183571		
20	Capparis spinosa L.	Kabar	Root	Up to 9.550713		
21	Carthamus tinctorius L.	Osfor	Seed	15.917	7855 - 31.83571	
22	Cassia angustifolia M.Vahl	Sanā	Leaf	Decoction	12.734284- 22.284997	
23	Cassia fistula L.	Khiārshanbar	Fruit	Dried	9.550713 979 - 90.95916	
23 24	Cerasus mahaleb (L.) Mill.	Mahlab	seed		713- 15.917855	
	Cerusus manateb (E.) Mill.	Wanao	Leaf	juice	204.658135	
			Seed	J	142-15.917855	
25	Cichorium intybus L.	Hendebā			571-12.734284	
			Root	Decoction	15.917855-	
)6	Cinnamomum commbourg (L) I Ducal	Vafaar	Olaamarin		47.753565	
26 27	Cinnamomum camphora (L.) J.Presl Cinnamomum bejolghota (BuchHam.) Sweet	Kāfoor Salikhah	Oleoresin	Up to 0.5306 6.367142		
_ /	5	Sunkhan	Burk	0.507142		
28	Cinnamomum zeylanicum Blume	Dārsini	Bark	6.367142-15.917855		
29	Citrullus colocynthis (L.) Schrad.	Hanzal	Fruit		7855- 3.183571	
30	Citrus medica L.	Otroj	Fruit	Dried Jam	15.917855 22.73979	
31	<i>Commiphora molmol</i> (Engl.) Engl. ex Tschirch	Morr	Oleogum resin	Up to 1.5917855		
32	Balsamea mukul Baill.	Moghl e azragh	Oleogum resin	3.183571		
33	Convolvulus scammonia L.	Saghmuniā	tuber	Juice	0.2653-1.0612	
34	Cordia myxa L.	Sapestān	Fruit		to 45.47958	
35	Coriandrum sativum L.	Kozborah	Aerial parts	Juice Dried	34.10969 68.21938	
			Seed		7855-34.10969	
36	Corylus avellana L.	Bondogh	Fruit		to 63.67142	
37	Crocus sativus L.	Zafarān	Stigma	Up	to 6.367142	

Table 3. Medicinal plants and the doses of their effective parts in PM^{*}

Res J Pharmacogn 5(2): 1-7

No.	Botanical name	Traditional	Effective part	Dose i	n PM (g/day)
		name			
38 39	Cucumis melo L. Cucurbita pepo L.	Bettikh Ghar	Seed Seed		42-15.917855
40	Cydonia oblonga Mill.	Safarjal	Fruit	Up to 31.835706 Juice up to 95.507	
41	Cymbopogon olivieri (Boiss.) Bor	Ezkher	Flower, Root	2.273979 - 4.547958	
42	Datura stramonium L.	Jaoz e māthel	Seed	Un	to 0.5306
			Root		27.67328
43	Daucus carota L.	Jazar	Seed		.367142
44	Descurainia sophia (L.) Webb ex Prantl	Khobbah	Seed		6 - 13.643874
45	Dorema ammoniacum D.Don	Oshagh	Oleogum resin	2.273979 - 4.547958	
46	Doronicum hyrcanum Widder & Rech.f.	Darunaj	Root		571-6.367142
47	Elettaria cardamomum (L.) Maton	Hamāmā	Fruit	Up t	o 6.367142
48	Eugenia caryophyllata Thunb.	Gharanfol	Flower	4	.547958
49	Ferula persica Willd.	Sakbinaj	Oleo gum resin	Up t	o 3.183571
50	Ficus carica L.	Tin	Fruit		: 136.43874
51	Foeniculum vulgare Mill.	Rāziānaj	Seed Root	4 Decoction	.547958 9.095916 -
50		Tendiana		13.6438	
52 53	Gentiana lutea L.	Jentiānā	Root	<u>4.547958</u> 15.917855	
53 54	Glycyrrhiza glabra L. Hyoscyamus niger L.	Sos Bang	Root Seed		to 1.0612
54 55	Hypericum perforatum L.	Hufārighoon	Seed, Leaf		
56	Iris germanica L.	Irsā	Root	3.183571- 6.367142 Up to 9.095916	
57 57	Lactuca sativa L.	Khas	Leaf	juice Up to 95.50	
58	Lawsonia inermis L.	Henā	Leaf	Max: 4.547958	
59	Malus domestica Borkh.	Toffāh	Fruit	31.835706	
60	Mandragora officinarum L.	Yabruh	Root	0.2653-1.0612	
61	Mentha spicata L.	Nanā	Aerial parts	9	.095916
62	Myrtus communis L.	Ās	Leaf	Dried juice	UP to 9.55071 UP to 102.3290
63	Nerium oleander L.	Deflā	Leaf	1.	5917855
64	Nigella sativa L.	Shoniz	Seed	1.59178	355 - 6.367142
65	Origanum vulgare L.	Marzanjush	Aerial parts	Decoction Dried	31.835706 9.095916
66	Papaver somniferum L.	Afyun	Latex		to 1.0612
67	Peganum harmala L.	Hormal	Seed	4.547958 - 9.095916	
68	Phyllanthus emblica L.	Amlaj	Fruit	Decoction Dried	Up to 31.8357 9.550713- 15.917855
69	Physalis alkekengi L.	Kākanaj	Seed	Up to	15.917855
70	Pimpinella anisum L.	Anisun	Seed	6.367142-15.917855	
71	Piper longum L.	Dārfelfel	Fruit	Up to 4.547958	
72	Piper nigrum L.	Felfel	Fruit	Up to 4.547958	
73	Plantago major L.	Lesānolhamal	Leaf	Juice	45.47958- 204.658135
74	Diantago ougt- Forsely	Dorrashat	Seed		.550713
74	Plantago ovata Forssk.	Bazreghatoonā Baghlatalhamghā	Seed		42-31.83571
75 76	Portulaca oleracea L. Prunus anyadalus Batsch	Baghlatolhomghā Laoz e mor	Seed Kernel oil		5.917855 3.191832
76 77	Prunus amygdalus Batsch Prunus armeniaca L.	Laoz e mor Meshmesh	Kernel oil		0 13.643874
	Prunus armeniaca L. Punica granatum L.				
78	-	Jolnār	Flower Fruit peel		71- 6.367142
79	Quercus infectoria G.Olivier	Ballut	Fruit peel Fruit		.547958 58- 68.21937
80	Quercus infectoria G.Olivier	Afs	Gal		.547958

Hosseini A. et al.

No.	Botanical name	Traditional name	Effective part	Dose i	n PM (g/day)
			Seed	3.183571	
81	Raphanus sativus L.	Fojl	Tuber	Dried Juice	63.67142 95.50713
82	Rhus coriaria L.	Somāgh	Fruit	15.917855	
83	Rosa gallica L.	Vard	Flower	Fresh Dried	31.83571 12.734284
84	Rubia tinctorum L.	Fovvatossabgh	Root	4.547958 Decoction 13.643874	
85	Rumex conglomeratus Murray	Hammāz	seed Aerial parts	Up to 6.367142 57.304278	
86	Ruta graveolens L.	Sodāb (Fijen)	Aerial parts	Up to 13.643874	
87	Saccharum spontaneum L.	Tabāshir	Stem	6.367142	
88	Saponaria officinalis L.	Satrunion	Root	1.5917855	
89	Drimia maritima (L.) Stearn.	Esghil	Bulb	Up to 6.367142	
90	Semecarpus anacardium L.f.	Belādor	Fruit	0.79589275 - 1.5917855	
91	Sesamum indicum L.	Semsem	Seed	15.917855	
92	Spinacia oleracea L.	Esfānākh	Leaf Seed	Juice 9.095916 6.367142	
93	Tamarindus indica L.	Tamr e hendi	Fruit	31.835706-136.43874	
94	Terminalia bellirica (Gaertn.) Roxb.	Balilaj	Fruit	Up to 9.550713	
95	Terminalia chebula Retz.	Ehlilaj	Fruit	Up to 15.917855	
96	Tribulus terrestris L.	Hasak	Fruit	15.91785	
97	Viola odorata L.	Banafsaj	Flower	Decoction Dried	Up to 45.47958 22.73979
98	Zingiber officinale Roscoe	Zanjabil	Rhizome	6.367142	

*Adapted from references 5, 14 and 16

It is crucial to bear in mind that the texts of PM has generally outlined the average dosage of medicinal plants, which allows researchers to choose either these doses or other values in estimated dosage ranges following conversion of human doses to animal equivalent doses. There is, of course, some evidence in the PM texts that the recommended doses described in these ancient references are the maximum doses for some medicinal plants; thus, the starting dose for such medicinal plants should be lower. The comparison of therapeutic and toxic effects of doses delineated in PM with doses used in other studies can help understand the potential efficacy of this method and modify it if needed.

Acknowledgments

This study is part of a PhD thesis of Amirsaeed Hosseini. Funding for this study was provided by the Mazandaran University of Medical Sciences, Sari, Iran.

Author contributions

Amirsaeed Hosseini was the main study investigator and contributed to the collection of the data; Seyed Afshin Shorofi participated in the data interpretation and revised the manuscript; Ali Davoodi participated in the data interpretation and revised the manuscript. Mohammad Azadbakht the study was investigator, contributed to the collection of the data and critically revised the manuscript.

Declaration of interest

The authors declare that there is no conflict of interest. The authors alone are responsible for the content of the paper.

References

- Yuan R, Lin Y. Traditional Chinese medicine: an approach to scientific proof and clinical validation. *Pharmacol Ther*. 2000; 86(2): 191-198.
- [2] Patwardhan B, Mashelkar RA. Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? *Drug Discov Today*. 2009; 14(15): 804-811.
- [3] World Health Organization. WHO publishes list of top emerging diseases likely to cause major epidemics. Geneva: World Health Organization, 2015.
- [4] Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug

discovery. *Environ Health Perspect*. 2001; 109(1): 69-75.

- [5] Azadbakht M, Hosseini AS, Fakhri M. Necessity of standardization of medicinal plant extracts in investigations and the manner to perform it. *Razi J Med Sci.* 2017; 23(152): 8-17.
- [6] Mirzaee F, Hosseini A, Jouybari HB, Davoodi A, Azadbakht M. Medicinal, biological and phytochemical properties of *Gentiana* species. *J Tradit Complement Med*. 2017; 7(4): 400-408.
- [7] Davoodi A, Ebrahimzadeh MA, Fathalinezhad F, Khoshvishkaie E. Antibacterial activity of *Mespilus germanica* leaf extract. *J Mazandaran Univ Med Sci*. 2017; 26(146): 173-178.
- [8] Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. *Evid Based Complement Alternat Med.* 2005; 2(4): 465-473.
- [9] Fakhri M, Davoodi A, Parviz M, Ghadi ZS, Mousavinasab SN, Farhadi R, Azadbakht M. Characterization and HPLC analysis of manna from some *Cotoneaster* species. *Int J Pharm Sci Res.* 2017; 8(12): 5360-5366.
- [10] Blondeau S, Do Q, Scior T, Bernard P, Morin-Allory L. Reverse pharmacognosy: another way to harness the generosity of nature. *Curr Pharm Des.* 2010; 16(15): 1682-1696.
- [11] Do QT, Bernard P. Reverse pharmacognosy:

a new concept for accelerating natural drug discovery. *Adv Phyt.* 2006; 2(1): 1-20.

- [12] Le Tourneau C, Stathis A, Vidal L, Moore MJ, Siu LL. Choice of starting dose for molecularly targeted agents evaluated in first-in-human phase I cancer clinical trials. J *Clin Oncol.* 2010; 28(8): 1401-1407.
- [13] Hosseini A, Azadbakht M, Yousofpoor M. 'Maoljobon' a drug in Iranian traditional medicine. J Mazandaran Univ Med Sci. 2017; 26(146): 269-278.
- [14] Aghili Khorasani M. Makhzan ol Advieh. Tehran: Tehran University of Medical Sciences Press, 2009.
- [15] Freireich EJ, Gehan E, Rall D, Schmidt L, Skipper H. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. *Cancer Chem Rep.* 1966; 50(4): 219-225.
- [16] Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. *Fed Am Soc Exp Biol J.* 2008; 22(3): 659-661.
- [17] Food & Drug Administration. Estimating the safe starting dose in clinical trials for therapeutics in adult healthy volunteers. Rockville: Food & Drug Administration, 2005.

Abbreviations

PM: Persian Medicine; LD: Lethal Dose; FDA: Food & Drug Administration