Antibacterial effects of Quercus Brantii fruits and Stachys lavandulifolia methanol extracts on imipenemase-type metallo-beta lactamase-producing Pseudomonas aeruginosa

Document Type : Original paper


1 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Department of Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

4 Department of Operation Room, Lorestan University of Medical Sciences, Khorramabad, Iran.


Background and objectives: Metallobeta-lactamase production is one of the most important mechanisms of antibiotic resistance. The aim of the present study was to evaluate the antibacterial activity of Stachys lavandulifolia and Quercus brantii on the IMP-type metallo-beta-lactamase-producing Pseudomonas aeruginosa. Methods: This study was performed on burn patients between January 2015 and November 2015. Susceptibility to the antibiotics and methanol extracts were evaluated by broth microdilution and disc diffusion methods. MBL-producing P. aeruginosa was detected by Combination Disk Diffusion Test (CDDT). The bla (VIM) and bla (IMP) genes detection were performed by PCR and sequencing methods. Results: Forty eight (57.9%) of 83 P. aeruginosa strains were resistant to imipenem and were blaIMP-1 genes positive, whereas none were bla (VIM) genes positive. In the hospitalized patients with MBL-producing Pseudomonas infection, the mortality rate was 4.48 (8.3%). It was found that S. lavandulifolia extract showed a high antibacterial effect on regular and IMP-producing P. aeruginosa strains at the concentration of 0.625 mg/mL, but Q. Brandy extract showed no antibacterial effect in the tested concentration. Conclusion: In burn patientsMBL-producing P. aeruginosa has been found in high incidence. Detection of this pseudomonas and determination of drug resistance pattern is very important. The methanol extract of S. lavandulifolia showed suitable effects on MBL-producing P. aeruginosa in vitro; therefore, it could be suggested for further studies against carbapenem resistant P. aeruginosa isolates.


[1] Strateva T, Yordanov D. Pseudomonas aeruginosa-a phenomenon of bacterial resistance. J Med Microbiol. 2009; 58(9): 1133-1148.
[2] Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their pathogenesis and prevalence in clinical settings and the environment. Infect Epidemiol Med. 2016; 2(1): 25-32.
[3] Yousefi S, Farajnia S, Nahaei MR, Akhi MT, Ghotaslou R, Soroush MH, Naghili B, Jazani NH. Detection of metallo-β-lactamase-encoding genes among clinical isolates of Pseudomonas aeruginosa in northwest of Iran. Diagn Microbiol Infect Dis. 2010; 68(3): 322-325.
[4] Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; Article ID PMC3128976.
[5] Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011; 11(5): 381-393.
[6] Miyajima Y, Hiramatsu K, Mizukami E, Morinaga R, Ishii H, Shirai R, Kishi K, Tokimatsu I, Saikawa T, Kadota JI. In vitro and in vivo potency of polymyxin B against IMP-type metallo-β-lactamase-producing Pseudomonas aeruginosa. Int J Antimicrobial Agents. 2008; 32(5): 437-340.
[7] Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-beta-lactamase-positive P. aeruginosa in Malaysia. J Med Microbial. 2011; 60(7): 988-994.
[8] Iyobe S, Kusadokoro H, Takahashi A, Yomoda S, Okubo T, Nakamura A, O'Hara K. Detection of a variant metallo-β-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob Agents Chemother. 2002; 46(6): 2014-2016.
[9] Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. Korean nationwide surveillance of antimicrobial resistance group. VIM-and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. Korean hospitals. Emerg Infect Dis. 2003; 9(7): 868-671.
[10] Bahar Z, Ghotaslou R, Taheri S. In vitro anti-biofilm activity of Quercus brantii subsp. persica on human pathogenic bacteria. Res J Pharmacogn. 2017; 4(1): 67-73.
[11] Sadrmomtaz A, Meshkatalsadat M, Taherparvar P. Comparison of volatile components of Stachys lavandulifolia Vahl obtained by MWHD and HD techniques. Digest J Nanometr Biostruc. 2011; 6(3): 1343-1348.
[12] Asadi M, Bahrami S. The effect of Stachys lavandulifolia Vahl and Mespilus germanica leaves hydroalcoholic extracts on Leishmania major (MRHO/IR/75/ER) in vitro. Jundishapur J Nat Pharm Prod. 2010; 5(1): 39-43.
[13] Mojab F, Kamalinejad M, Ghaderi N, Vahidipour HR. Phytochemical screening of some species of Iranian plants. Iran J Pharm Res. 2003; 2: 77-82.
[14] Alikhani L, Rahmani M-S, Shabanian N, Badakhshan H, Khadivi-Khub A. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene. 2014; 552(1): 176-183.
[15] Issa S, Mehdi H, Sakine S, Shoele J. Antimicrobial effects of Quercus brantii fruits on bacterial pathogens. Jundishapur J Microbiol. 2012; 5(3): 465-469.
[16] Hemmati AA, Houshmand G, Nemati M, Bahadoram M, Dorestan N, Rashidi-Nooshabadi MR, Zargar H. Wound healing effects of persian Oak (Quercus brantii) ointment in rats. Jundishapur J Nat Pharm Prod. 2015; Article ID e25508.
[17] Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial   Susceptibility Testing; Seventeenth Informational Supplement. Wayne: CLSI, 2012.
[18] Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-beta-lactamase production in Enterobacteriaceae. J Antimicrob Chemother. 2008; 61(3): 548-553.
[19] Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing P. aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008; 60(1): 125-128.
[20] Mehrara M, Pourramezan M, Asgarpanah J, Rahimifard N, Khoshnood S, Heidary M. Comparison the antimicrobial effect of methanolic total extracts and petroleum ether fractions of flowering aerial parts of Glaucium vitellinum Boiss. & Buhse and Gaillonia aucheri Jaub. & Spach. Novelty Biomed. 2017; 5(1): 24-29.
[21] Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras. 2016; 31(3): 206-211.
[22] De AS, Kumar SH, Baveja SM. Prevalence of metallo-beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in intensive care areas in a tertiary care hospital. Indian J Crit Care Med. 2010; 14(4): 217-219.
[23] Chin BS, Han SH, Choi SH, Lee HS, Jeong SJ, Choi HK, Choi JY, Song YG, Kim CK, Yong D, Lee K. The characteristics of metallo-β-lactamase-producing gram-negative bacilli isolated from sputum and urine: a single center experience in Korea. Yonsei Med J. 2011; 52(2): 351-357.
[24] Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R, Juan C, Cantón R, Oliver A. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011; 66(9): 2022-2027.
[25] Aboufaycal H, Sader HS, Rolston K, Deshpande LM, Toleman M, Bodey G, Raad I, Jones RN. BlaVIM-2 and blaVIM-7 carbapenemase-producing Pseudomonas aeruginosa isolates detected in a tertiary care medical center in the United States: report from the MYSTIC program. J clin microbiol. 2007; 45(2): 614-615.
[26] Marra AR, Pereira CA, Gales AC, Menezes LC, Cal RG, de Souza JM, Edmond MB, Faro C, Wey SB. Bloodstream infections with metallo-β-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob Agents Chemother. 2006; 50(1): 388-390.
[27] Rahzani K, Malekirad AA, Zeraatpishe A, Hosseini N, Seify SM, Abdollahi M. Anti-oxidative stress activity of Stachys lavandulifolia aqueous extract in human. Cell J. 2013; 14(4): 314-317.
[28] Safary A, Motamedi H, Maleki S, Seyyednrjad SM. A preliminary Study on the antibacterial activity of Quercus brantii against bacterial pathogens, particularly enteric pathogens. Int J Botany. 2009; 5(2): 176-180.
[29] Fooladvand Z, Fazehi-nasab B. Antibacterial activities of Stachys lavandulifolia Vahl. extract against eight bacteria. J Herb Drugs. 2014; 5(1): 13-18.
[30] Rao BG, Rao PU, Rao ES, Rao TM. Evaluation of in vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L. root bark. Asian Pac J Trop Biomed. 2012; 2(10): 818-821.
[31] Shahnama M, Azami S, Mohammadhosseini M. Characterization of the essential oil and evaluation of antibacterial activity of methanolic extract of Stachys lavandulifolia Vahl. Int J Curr Microbiol App Sci. 2015; 4(3): 275-283.