Evaluation of anti-malarial activity of Artemisia turcomanica and A. kopetdaghensis by cell-free β-hematin formation assay

Document Type : Original paper


1 Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.

2 Depertment of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.

3 Department of Pharmacogenesis, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

4 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.


Background and objectives:The plants of genus Artemisia (Asteraceae) have been conventionally used for prevention and medication of a number of ailments. In the present research, ten extracts with different polarities from aerial parts of two Artemisia species, A. kopetdaghensis and A. turcomanica were evaluated for their potential anti-malarial properties.
Methods: The plant materials were extracted successively with petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAC), ethanol, and ethanol-water (1:1 v/v)  by cold maceration method. Cell free β-hematin formation assay were used for assessing anti-malarial activity of obtained extracts.
Results: DCM extract of A. kopetdaghensis and PE extract of A. turcomanica showed remarkable anti-malarial activity with IC50 values of 1.04±0.02 mg/mL and 0.90±0.27 mg/mL, respectively, compared to positive control (chloroquine, IC50 0.04±0.01 mg/mL).
Conclusion:  It seems that the anti-malarial activity of these extracts might be bound up with the presence of compounds with low or medium polarity; hence, this preliminary test indicated that these potent extracts could be considered for further investigations to find new sources of anti-malarial phytochemicals.     


[1] Saadali B, Boriky D, Blaghen M, Vanhaelen M, Talbi M. Alkamides from Artemisia dracunculus. Phytochemistry. 2001; 58(7): 1083-1086.
[2] Vasconcelos JMJ, Silva AMS, Cavaleiro JAS. Chromones and flavanones from Artemisia campestris subsp. maritima. Phytochemistry. 1998; 49(5): 1421-1424.
[3] Zhu C, Cook SP. A concise synthesis of (+)-artemisinin. J Am Chem Soc. 2012; 134(33): 13577-13579.
[4] Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis. 2016; 16(1): 61-69.
[5] Araujo JQ, Carneiro JW, de Araujo MT, Leite FH, Taranto AG.  Interaction between artemisinin and heme. A density functional theory study of structures and interaction energies. Bioorg Med Chem. 2008; 16(9): 5021-5029.
[6] Balint GA. Artemisinin and its derivatives, an important new class of antimalarial agents. Pharmacol Ther. 2001; 90(2-3): 261-265.
[7] Astelbauer F, Gruber M, Brem B, Greger H, Obwaller A, Wernsdorfer G, Congpuong K, Wernsdorfer WH, Walochnik J. Activity of selected phytochemicals against Plasmodium falciparum. Acta Trop. 2012; 123(2): 96-100.
[8]  Lun ZR, Ferreira P, Fu LC. Artemisinin resistance in Plasmodium falciparum. Lancet Infect Dis. 2014; 14(6): 450-451.
[9]  Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, Rizk SS, Njimoh DL, Ryan Y, Chotivanich K, Nguon C, Ghorbal M, Lopez-Rubio JJ, Pfrender M, Emrich S, Mohandas N, Dondorp AM, Wiest O, Haldar K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria .Nature. 2015; 520 (7549): 683-687.
[10] Bero J, Frederich M, Quetin-Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol. 2009; 61(11): 1401-1433.
[11] Camargo LM, de Oliveira S, Basano S, Garcia CR. Antimalarials and the fight against malaria in Brazil. Ther Clin Risk Manag. 2009; 5(4): 311-317.
[12] Magadula JJ, Erasto P. Bioactive natural products derived from the East African flora. Nat Prod Rep. 2009; 26(12): 1535-1554.
[13] Fattorusso E, Taglialatela-Scafati O. Marine Antimalarials. Mar Drugs. 2009; 7(2): 130-152.
[14] Pillay P, Vleggaar R , Maharaj VJ, Smith PJ, Lategan CA. Isolation and identification of antiplasmodial sesquiterpene lactones from Oncosiphon piluliferum. J Ethnopharmacol. 2007; 112(1): 71-76.
[15] Rukunga GM, Muregi FW, Omar SA, Gathirwa JW, Muthaura CN, Peter MG, Heydenreich M, Mungai GM. Anti-plasmodial activity of the extracts and two sesquiterpenes from Cyperus articulatus. Fitoterapia. 2008; 79(3): 188-190.
[16] Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Asih BP, Syafruddin D, Kadota S. Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure–activity relationship. Biol Pharm Bull. 2006; 29(5): 1050-1052.
[17] Jullian V, Bonduelle C, Valentin A, Acebey L, Duigou AG, Prevost MF, Sauvain M. New clerodane diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with antiplasmodial and antileishmanial activities. Bioorg Med Chem Lett. 2005; 15(22): 5065-5070.
[18] Akam TM, Tane P, Wabo HK, Yong JN, Fanso- Free SNY, Connolly JD, Evans C, Farrugia LJ. A pregnane derivative and an anti-plasmodial labdane diterpenoid from the stem bark of Turraenthus africanus. Nat Prod Commun. 2006; 1(6): 449-452.
[19] Khaomek P, Ichino C, Ishiyama A, Sekiguchi H, Namatame M, Ruangrungsi N, Saifah E, Kiyohara H, Otoguro K, Omura S, Yamada H. In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J Nat Med. 2008; 62(2): 217-220.
[20] Ramanandraibe V, Grellier P, Martin MT, Deville A, Ramanitrahasimbola D, Mouray E, Rasoanaivo P, Mambu L. Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Med. 2008; 74(4): 417-421.
[21] Jullian V, Bourdy G, Georges S, Maurel S, Sauvian M. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam. J Ethnopharmacol. 2006; 106(3): 348-352.
[22] Toriizuka Y, Kinoshita E, Kogure N, Kitajima M, Ishiyama A, Otoguro K, Yamada H, Omura S, Takayama H. New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives. Bioorg Med Chem. 2008; 16(24): 10182-10189.
[23] Frappier F, Mazier D, Carraz M, Franetich JF, Jossang A, Joyeau R, Rasoanaivo P, inventors; Universite Pierre Et Marie Curie (Paris Vi), Centre National De La Recherche Scientifique, Museum National D'histoire Naturelle, Institut Malgache De Recherche Appliquee, assignee. Alkaloid compounds and their use as anti-malarial drugs. United States patent US 7,943,633. 2011 May 17.
[24] Morita H, Oshimi S, Hirasawa Y, Koyama K, Honda T, Ekasari W, Indrayanto G, Zaini NC. Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea. Org Lett. 2007; 9(18): 3691-3693.
[25] Park WH, Lee SJ, Moon HI. Antimalarial activity of a new stilbene glycoside from Parthenocissus tricuspidata in mice. Antimicrob Agents Chemother. 2008; 52 (9): 3451-3453.
[26] Son IH, Chung IM, Lee SJ, Moon HI. Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol Res. 2007; 101 (1): 237-241.
[27] Lee SI, Yang HD, Son IH, Moon HI. Antimalarial activity of a stilbene glycoside from Pleuropterus ciliinervis. Ann Trop Med Parasitol. 2008; 102(2): 181-184.
[28] Ma C, Zhang HJ, Tan GT, Hung NV, Cuong NM, Soejarto DD, Fong HH. Antimalarial compounds from Grewia bilamellata. J Nat Prod. 2006; 69(3): 346-350.
[29] Ross SA, Krishnaven K, Radwan MM, Takamatsu S, Burandt CL. Constituents of Zanthoxylum flavum and their antioxidant and antimalarial activities. Nat Prod Commun. 2008; 3(5): 791-794.
[30] Heshmati Afshar F, Delazar A, Janneh O, Nazemiyeh H, Pasdaran A, Nahar L, Sarker SD. Evaluation of antimalarial, free-radical scavenging and insecticidal activities of Artemisia scoparia and A. spicigera, Asteraceae. Rev Bras Farmacogn. 2011; 21 (6): 986-990.
[31] Mojarrab M, Shiravand A, Delazar A, Heshmati Afshar F. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and  A. armeniaca L. and fractions of the most potent extracts. Sci World J. 2014; Article ID 825370.
[32] Mojarrab M, Naderi R, Heshmati Afshar F. Screening of different extracts from Artemisia species for their potential antimalarial activity. Iran J Pharm Res. 2015; 14(2): 603-608.
[33] Habibi Z, Yousefi M, Mohammadi M, Eftekhar F, Biniyaz T, Rustaiyan A. Chemical composition and antibacterial activity of the volatile oils from Artemisia turcomanica. Chem Nat Compd. 2010; 46(5): 819-821.
[34] Nikbakht MR, Sharifi S, Emami SA, Khodaie L. Chemical composition and antiprolifrative activity of Artemisia persica Boiss. and Artemisia turcomanica Gand. essential oils. Res Pharm Sci. 2014; 9(2): 155-163.
[35] Masoudi S,  Rustaiyan A, Vahedi M. Volatile oil constituents of different parts of Artemisia chamaemelifolia and the composition and antibacterial activity of the aerial parts of A. turcomanica from Iran. Nat Prod Commun. 2012; 7(11): 1519-1522.
[36] Ramezani M, Behravan J, Yazdinezhad A. Composition and antimicrobial activity of the volatile oil of Artemisia kopetdaghensis Krasch, M.Pop. & Linecz ex Poljak from Iran. Flavour Frag J. 2006; 21(6): 869-871.
[37] Mirdeilami SZ, Barani H, Mazandarani M, Heshmati GA. Ethnopharmacological survey of medicinal plants in Marraveh Tappeh region, north of Iran. Iran J Plant Physiol. 2011; 2(1): 327-380.
[38] Ebrahimi M, Ramezani M, Tehrani SO, Malekshah OM, Behravan J.  Cytotoxic effects of methanolic extract and essential oil of Artemisia Kopetdaghensis. J Essent Oil Bear Pl. 2010; 13(6): 732-737.
[39] Oliaee D, Boroushaki MT, Oliaee N, Ghorbani A.  Evaluation of cytotoxicity and antifertility effect of Artemisia kopetdaghensis. Advan Pharmacol Sci. 2014; Article ID 745760.
[40] Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. Glutathione reductase of the malaria parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol. 2003; 328(4): 893-907.
[41] Egan TJ. Haemozoin (malaria pigment): a unique crystalline drug target. Targets. 2003; 2(3): 115-124.
[42] Huy NT, Uyen DT, Sasai M, Trang DT, Shiono T, Harada S, Kamei K. A simple and rapid colorimetric method to measure hemozoin crystal growth in vitro. Anal Biochem. 2006; 354(2): 305-307.
[43] Sonnet P, Mullie C. In vitro antimalarial activity of ICL670: A further proof of the correlation between inhibition of b-hematin formation and of peroxidative degradation of hemin. Exp Parasitol. 2011; 128(1): 26-31.
[44] Bandyopadhyay U, Dey S. Antimalarial drugs and molecules inhibiting hemozoin formation. In: Becker K, Ed. Apicomplexan parasites: molecular approaches toward targeted drug development. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
[45] Rathore D, Jani D, Nagarkatti R, Kumar S. Heme detoxification and antimalarial drugs-Known mechanisms and future prospects. Drug Discov Today Ther Strategies. 2006; 3(2): 153-158.
[46] Sashidhara KV, Singh SP, Singh SV, Srivastava RK, Sirvastava K, Saxena JK, Puri SK. Isolation and identification of β-hematin inhibitors from Flacourtia indica as promising antiplasmodial agents. Eur J Med Chem. 2013; 60: 497-502.
[47] Alberto Marco J, Sanz-cervera JF, Manglano E, Sancenon F, Rustaiyan A, Kardar M. Sesquiterpene lactones from Iranian Artemisia species. Phytochemistry. 1993; 34 (6): 1561-1564.
[48] Yared D, Mekonnen Y, Debella A. In vivo antimalarial activities of fractionated extracts of Asparagus africanus in mice infected with Plasmodium berghei. Pharmacologyonline. 2012; 3: 88-94.