In Silico and In Vitro Evaluation of Selected Herbal Compounds as Robust HER-2 Inhibitors for Effective Treatment of Breast Cancer

Document Type : Original paper

Authors

1 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

2 Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

3 Vice-Chancellor for Research & Technology, Hamadan University of Medical Sciences, Hamadan, Iran.

4 Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.

Abstract

Background and objectives: Breast cancer is the most frequently reported malignancy in women worldwide and is a heterogeneous disease. Due to different levels of human epidermal growth factor receptor 2 (HER-2) and its critical role in tumor progression, HER-2 has been considered as a validated target in breast cancer therapy. The present study aimed to identify new and effective HER-2 inhibitors from selected plant-based compounds using a computational drug discovery approach. The anticancer effects of top-ranked compounds were then evaluated using cellular and molecular methods. Methods: The binding affinities of 47 herbal compounds (including 21 flavonoids, 16 anthraquinones, and 10 cinnamic acids) with the extracellular domain of HER-2 were evaluated using m­olecular docking analysis. The top hits were evaluated for their cell proliferation inhibition, apoptosis, and migration effects in high and low HER-2-overexpressing SKBR-3 and MCF-7 cell lines, respectively. Results:  Chrysin, chrysophanol, and chlorogenic acid revealed the highest binding affinity to the extracellular domain of HER-2; therefore, they were considered the top-ranked HER-2 inhibitors in this study. Each component inhibited cell proliferation and decreased migration activity of SKBR-3 and MCF-7 cell lines, while the SKBR-3 cells were affected more. The results of the apoptosis assay showed that chrysin was the only compound that could cause a significant induction of SKBR-3 cell apoptosis in comparison to MCF-7 cells. Conclusion: The results of the present study suggest that chrysophanol, chlorogenic acid, and especially chrysin may have anticancer effects and could be considered drug candidates for therapeutic aims in human HER-2 positive cancer.

Keywords

Main Subjects


  • Gresa‐Arribas N, Serratosa J, Saura J, Solà Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti‐inflammatory and neuroprotective effects. J Neurochem. 2010; 115(2): 526–536.
  • Harborg S, Zachariae R, Olsen J, Johannsen M, Cronin-Fenton D, Boggild H, Borgquist S. Overweight and prognosis in triple-negative breast cancer patients: a systematic review and meta-analysis. NPJ Breast Cancer. 2021; 7(1): 1–9.
  • Johnson KS, Conant EF, Soo M. Molecular subtypes of breast cancer: a review for breast radiologists. J Breast Imaging. 2021; 3(1): 12–24.
  • Malhotra GK, Zhao X, Band H, Band VJCB. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010; 10(10): 955–960.
  • Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam MJCO. Emerging ways to treat breast cancer: will promises be met? Cell Oncol. 2018; 41(6): 605–621.
  • Loibl S, Gianni LJTL. HER2-positive breast cancer. Lancet. 2017; 389(10087): 2415–2429.
  • Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012; 9(1): 16–32.
  • Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther. 2019; 4(1): 1–22.
  • Li J, Wang H, Li J, Bao J, Wu C. Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive breast cancer. Int J Mol Sci. 2016; 17(7): 1–14.
  • Tasleem M, Alrehaily A, Almeleebia TM, Alshahrani MY, Ahmad I, Asiri M, Alabdallah NM, Saeed M. Investigation of antidepressant properties of yohimbine by employing structure-based computational assessments. Curr Issues Mol Biol. 2021; 43(3): 1805–1827.
  • Tavakoli J, Miar S, Zadehzare MM, Akbari H. Evaluation of effectiveness of herbal medication in cancer care: a review study. Iran J Cancer Prev. 2012; 5(3): 144–156.
  • Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol. 2021; 32(6): 1105–1119.
  • Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular docking analysis of flavonoid compounds with matrix metalloproteinase-8 for the identification of potential effective inhibitors. Lett Drug Des Discov. 2021; 18(1): 16–45.
  • Taherkhani A, Moradkhani S, Orangi A, Jalalvand A. In silico study of some natural anthraquinones on matrix metalloproteinase inhibition. Res J Pharmacogn. 2021; 8(4): 37–51.
  • Taherkhani A, Orangi A, Moradkhani S, Jalalvand A, Khamverdi Z. Identification of potential anti-tooth-decay compounds from organic cinnamic acid derivatives by inhibiting matrix metalloproteinase-8: an in silico study. Avicenna J Dent Res. 2022; 14(1): 25–32.
  • Taherkhani A, Ghonji F, Mazaheri A, Lohrasbi MP, Mohamadi Z, Khamverdi Z. Identification of potential glucosyltransferase inhibitors from cinnamic acid derivatives using molecular docking analysis: a bioinformatics study. Avicenna J Clin Microbiol Infect. 2021; 8(4): 145–155.
  • Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020; 12(2): 1–25.
  • Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RCS Adv. 2021; 11(57): 35806–35827.
  • De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem. 2011; 18(11): 1672–1703.
  • Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules. 2014; 19(7): 9655–9674.
  • Saeed M, Tasleem M, Shoib A, Kausar MA, Sulieman AME, Alabdallah NM, Asmar Z, Abdelgadir A, Al-Shamari A, Alam MJ. Identification of putative plant-based ALR-2 inhibitors to treat diabetic peripheral neuropathy. Curr Issues Mol Biol. 2022; 44(7): 2825–2841.
  • Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004; 5(4): 317–328.
  • Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutte S, Feng Z. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016; 45(1): 271–281.
  • Satyanarayanajois S, Villalba S, Jianchao L, Lin GM. Design, synthesis, and docking studies of peptidomimetics based on HER2–herceptin binding site with potential antiproliferative activity against breast cancer cell lines. Chem Biol Drug Des. 2009; 74(3): 246–257.
  • Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: a historical perspective. Electrophoresis. 2009; 30(S1): 162–173.
  • Tasleem M, Ishrat R, Islam A, Ahmad F, Hassan I. Structural characterization, homology modeling and docking studies of ARG674 mutation in MyH8 gene associated with trismus-pseudocamptodactyly syndrome. Lett Drug Des Discov. 2014; 11(10): 1177–1187.
  • Laxmi D, Priyadarshy S. HyperChem 6.03. Biotech Softw Internet Rep. 2002; 3(1): 5–9.
  • Morris GM, Huey R, Olson AJ. Using autodock for ligand‐receptor docking. Curr Protoc Bioinform. 2008; 24(1): 8–14.
  • Bamehr H, Saidijam M, Dastan D, Amini R, Pourjafar M, Najafi R. Ferula pseudalliacea induces apoptosis in human colorectal cancer HCT-116 cells via mitochondria-dependent pathway. Arch Physiol Biochem. 2019; 125(3): 284–291.
  • Rezaeepoor M, Rashidi G, Pourjafar M, Mohammadi C, Solgi G, Najafi R. SEMA4D Knockdown attenuates β-catenin-dependent tumor progression in colorectal cancer. Biomed Res Int. 2021; Article ID 8507373.
  • Gaillard T. Evaluation of autodock and autodock vina on the CASF-2013 benchmark. J Chem Inf Model. 2018; 58(8): 1697–1706.
  • Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, Qaisrani TB, Shah ZA, Plygun S, Heydari M. Chrysin: pharmacological and therapeutic properties. Life Sci. 2019; 235: 1–10.
  • Chin YW, Jung HA, Liu Y, Su BN, Castoro JA, Keller WJ, Pereira MA, Kinghorn AD. Antioxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J Agric Food Chem. 2007; 55(12): 4691–4697.
  • Salehi B, Venditti A. The therapeutic potential of apigenin. Int J Mol Sci. 2019; 20(6): 1–26.
  • Guo Y, Li D, Cen XF, Qiu HL, Ma YL, Liu Y, Huang SH, Liu LB, Xu M, Tang QZ. Diosmetin protects against cardiac hypertrophy via p62/Keap1/Nrf2 signaling pathway. Oxid Med Cell Longev. 2022; Article ID 8367997.
  • Peng L, Gao X, Nie L, Xie J, Dai T, Shi C, Tao L, Wang Y, Tian Y, Sheng J. Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in Mice. Front Immunol. 2020; 11: 1–13.
  • Gilani SJ, Bin-Jumah MN, Al-Abbasi FA, Nadeem MS, Imam SS. Protective effect of fustin against ethanol-activated gastric ulcer via downregulation of biochemical parameters in rats. ACS Omega. 2022; 7(27): 23245–23254.
  • Hong A. Antimicrobial activities of tea-derived flavonoids against skin staphylococci. Undergraduate thesis. Department of Math-Science, College of Arts & Sciences, Concordia University, Portland. U.S, 2017.
  • Stevens JF, Taylor AW, Nickerson GB, Ivancic M, Henning J, Haunold A, Deinzer ML. Prenylflavonoid variation in Humulus lupulus: distribution and taxonomic significance of xanthogalenol and 4'-O-methylxanthohumol. Phytochemistry. 2000; 53(7): 759–775.
  • Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, Shen J, Chen J. A review: the pharmacology of isoliquiritigenin. Phytother Res. 2015; 29(7): 969–977.
  • Thong NM, Vo QV, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical study for exploring the diglycoside substituent effect on the antioxidative capability of isorhamnetin extracted from anoectochilus roxburghii. ACS Omega. 2019; 4(12): 14996–15003.
  • Gong Y, Fang F, Zhang X, Liu B, Luo H, Li Z, Zhang X, Zhang Z, Pang X. B type and complex A/B type epicatechin trimers isolated from litchi pericarp aqueous extract show high antioxidant and anticancer activity. Int J Mol Sci. 2018; 19(1): 1–19.
  • Wang MC, Huang WC. Sophoraflavanone G from Sophora flavescens ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress in a murine asthma model. Int J Mol Sci. 2022; 23(11): 1–15.
  • Hu S, Wang D, Wang W, Zhang C, Li Y, Wang Y, Zhou W, Niu J, Wang S, Qiang Y. Whole genome and transcriptome reveal flavone accumulation in Scutellaria baicalensis Front Plant Sci. 2022; 13: 1–13.
  • Karancsi Z, Kovács D. The impact of quercetin and its methylated derivatives 3-O-methylquercetin and rhamnazin in lipopolysaccharide-induced inflammation in porcine intestinal cells. 2022; 11(7): 1–12.
  • Kang GD, Kim DH. Ponciretin attenuates ethanol-induced gastric damage in mice by inhibiting inflammatory responses. Int immunopharmacol. 2017; 43: 179–186.
  • Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia. 2013; 90: 160–184.
  • Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients. 2019; 11(3): 1–20.
  • Reddy UDC, Chawla AS, Deepak M, Singh D, Handa SS. High pressure liquid chromatographic determination of bergenin and (+)‐afzelechin from different parts of Paashaanbhed (Bergenia ligulata Yeo). Phytochem Anal. 1999; 10(1): 44–47.
  • Egler J, Lang F. Licochalcone a induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015; 37(5): 2060–2070.
  • Aydin T, Bayrak N, Baran E, Cakir A. Insecticidal effects of extracts of Humulus lupulus (hops) L. cones and its principal component, xanthohumol. Bull Entomol Res. 2017; 107(4): 543–549.
  • Lima Cavendish R, de Souza Santos J, Belo Neto R, Oliveira Paixao A, Valeria Oliveira J, Divino de Araujo ED, Silva AA, Thomazzi SM, Cardoso JC, Gomes MZ. Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents. J Ethnopharmacol. 2015; 173: 127–133.
  • Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes L, Dashora K, Gupta VK. Chrysophanol: a natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules. 2019; 9(2): 1–24.
  • Xu Z, Hou Y, Zou C, Liang H, Mu J, Jiao X, Zhu Y, Su L, Liu M, Chen X. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-κB activation. Int J Biol Sci. 2022; 18(7): 2759–2774.
  • Nair DA, James T, Sreelatha S, Kariyil BJ. Antioxidant and antiproliferative properties of Moringa oleifera leaf aqueous extract. Plant Sci Today. 2020; 7(4): 649–657.
  • Zhou YX, Xia W, Yue W, Peng C, Rahman K, Zhang H. Rhein: a review of pharmacological activities. Evid Based Complement Altern Med. 2015; Article ID 578107.
  • Krivoshchekova O, Maximov O, Stepanenko L, Mishchenko N. Quinones of the lichen Cetraria cucullata. Phytochemistry. 1982; 21(1): 193–196.
  • Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligeqi, Ni J. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016; 30(8): 1207–1218.
  • Tseng CC, Lai YC, Kuo TJ, Su JH, Sung PJ. Rhodoptilometrin, a crinoid-derived anthraquinone, induces cell regeneration by promoting wound healing and oxidative phosphorylation in human gingival fibroblast cells. Mar Drugs. 2019; 17(3): 1–20.
  • Dong X, Wang L, Song G, Cai X, Wang W, Chen J, Wang G. Physcion protects rats against cerebral ischemia-reperfusion injury via inhibition of TLR4/NF-kB signaling pathway. Drug Des Devel Ther. 2021; 15: 277–287.
  • Akao T, Che QM, Kobashi K, Yang L, Hattori M, Namba T. Isolation of a human intestinal anaerobe, Bifidobacterium strain SEN, capable of hydrolyzing sennosides to sennidins. Appl Environ Microbiol. 1994; 60(3): 1041–1043.
  • Shi X, Zhang Y, Lin B, Zhou Y, Suo W, Wei J, Zhang L, Lin J, Xiao F, Zhao L. Danthron attenuates experimental atherosclerosis by targeting foam cell formation. Exp Physiol. 2021; 106(3): 653–662.
  • Chitsaz R, Zarezadeh A, Asgarpanah J. Rubiadin exerts an acute and chronic anti-inflammatory effect in rodents. Braz J Biol. 2021; 83: 1–8.
  • Park EJ, Park K. Potent and selective inhibition of CYP1A2 enzyme by obtusifolin and its chemopreventive effects. Pharmaceutics. 2022; 14(12): 1–14.
  • Ji Y, Jiang C, Zhang X, Liu W, Gao M, Li Y, Wang J, Wang Q, Sun Z, Jiang X. Necrosis targeted combinational theragnostic approach using radioiodinated sennidin A in rodent tumor models. Oncotarget. 2014; 5(10): 2934–2946.
  • Woradulayapinij W, Pothiluk A, Nualsanit T, Yimsoo T, Yingmema W, Rojanapanthu P, Hong Y, Baek SJ, Treesuppharat W. Acute oral toxicity of damnacanthal and its anticancer activity against colorectal tumorigenesis. Toxicol Rep. 2022; 9: 1968–1976.
  • Wube AA, Bucar F, Asres K, Gibbons S, Adams M, Streit B, Bodensieck A, Bauer R. Knipholone, a selective inhibitor of leukotriene metabolism. Phytomedicine. 2006; 13(6): 452–456.
  • Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N. Anticancer potential of damnacanthal and nordamnacanthal from morinda elliptica roots on T-lymphoblastic leukemia cells. Molecules. 2021; 26(6): 1–20.
  • Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017; 22(3): 1–21.
  • Da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, Calixto JB. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res. 2004; 38(11): 1241–1253.
  • Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding K, Jing W, Ju W. Caffeic acid phenethyl ester prevents colitis-associated cancer by inhibiting NLRP3 inflammasome. Front Oncol. 2020; 10: 1–12.
  • Shahidi F, Chandrasekara A. Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev. 2010; 9(1): 147–170.
  • Budryn G, Nebesny E. Phenolic acids - their properties, occurrence, in plant raw materials, absorption, and metabolic transformations. Bromatol Chem. 2006; 39(2): 103–110.
  • Salameh D, Brandam C, Medawar W, Lteif R, Strehaiano P. Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chem. 2008; 107(4): 1661–1667.
  • Kowczyk-Sadowy M, Świsłocka R, Lewandowska H, Piekut J, Lewandowski W. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR), theoretical and microbiological study of trans o-coumaric acid and alkali metal o-coumarates. Molecules. 2015; 20(2): 3146–3169.
  • United States Department of Agriculture. Dr. Duke's Phytochemical and ethnobotanical databases. [Accessed 2023]. Available from: https://phytochem.nal.usda.gov/.
  • Masi M, Koirala M, Delicato A. Isolation and biological characterization of homoisoflavanoids and the alkylamide N-p-coumaroyltyramine from Crinum biflorum, an amaryllidaceae species collected in Senegal. Biomolecules. 2021; 11(9): 1–21.
  • Silva H, Lopes NMF. Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Front Physiol. 2020; 11: 1–20.
  • Ruwizhi N, Aderibigbe BA. Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci. 2020; 21(16): 1–34.
  • Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018; 31(6): 332–336.
  • Senawong T, Misuna S, Khaopha S, Nuchadomrong S, Sawatsitang P, Phaosiri C, Surapaitoon A, Sripa B. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum: sinapinic acid acts as HDAC inhibitor. BMC Complement Altern Med. 2013; 13: 1–11.
  • Triptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of conventional and nonconventional hydrogen bond donors in Au–complexes. J Phys Chem. 2022; 126(24): 3880–3892.
  • Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med. 2009; 75(1): 41–48.
  • Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, Binnie M, Navarrete G, Estrada-Soto S. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem. 2010; 45(6): 2606–2612.
  • Wang J, Qiu J, Dong J, Li H, Luo M, Dai X, Zhang Y, Leng B, Niu X, Zhao S. Chrysin protects mice from Staphylococcus aureus J Appl Microbiol. 2011; 111(6): 1551–1558.
  • Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X, Ye F, Mao P, Wu X, Pan R. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett. 2018; 15(6): 9117–9125.
  • Liu D, Li YP, Shen HX, Li Y, He J, Zhang QZ, Liu YM. Synthesis and antitumor activities of novel 7-O-amino acids chrysin derivatives. Chin Herb Med. 2018; 10(3): 323–330.
  • Kasala ER, Bodduluru LN, Madana RM, Gogoi R, Barua CCJTL. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol Lett. 2015; 233(2): 214–225.
  • Nagasaka M, Hashimoto R, Inoue Y, Ishiuchi Ki, Matsuno M, Itoh Y, Tokugawa M, Ohoka N, Morishita D, Mizukami H. Anti-tumorigenic activity of chrysin from Oroxylum indicum via non-genotoxic p53 activation through the ATM-Chk2 pathway. Molecules. 2018; 23(6): 1–13.
  • Huang C, Wei YX, Shen MC, Tu YH, Wang CC, Huang HC. Chrysin, abundant in Morinda citrifolia fruit water–etoac extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells. J Agric Food Chem. 2016; 64(21): 4235–4245.
  • Hong TB, Rahumatullah A, Yogarajah T, Ahmad M, Yin KB. Potential effects of chrysin on MDA-MB-231 cells. Int J Mol Sci. 2010; 11(3): 1057–1069.
  • Lirdprapamongkol K, Sakurai H, Abdelhamed S, Yokoyama S, Maruyama T, Athikomkulchai S, Viriyaroj A, Awale S, Yagita H, Ruchirawat S. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep. 2013; 30(5): 2357–2364.
  • Salama AA, Allam RM. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. Eur J Pharmacol. 2021; Article ID 173763.
  • Yang YQ, Yan C, Branford-White CJ, Hou XY. Biological values of acupuncture and Chinese herbal medicine: impact on the life science. Evid Based Complement Altern Med. 2014; Article ID 593921.
  • Park JJ, Hwang SJ, Park JH, Lee HJ. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway. Cell Oncol. 2015; 38(2): 111–118.
  • Huang S, Wang LL, Xue NN, Li C, Guo HH, Ren TK, Zhan Y, Li WB, Zhang J, Chen XG. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics. 2019; 9(23): 6745–6763.
  • Zeng A, Liang X, Zhu S, Liu C, Wang S, Zhang Q, Zhao J, Song L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF‑κB signaling pathway. Oncol Rep. 2021; 45(2): 717–727.
  • Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, Kuo CL, Lu HF, Lee TH, Wood WG, Chung JG. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res. 2010; 54(7): 967–976.
  • Lee MS, Cha EY, Sul JY, Song IS, Kim JYJPR. Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway. Phytother Res. 2011; 25(6): 833–837.
  • Wang J, Lv PJB. Chrysophanol inhibits the osteoglycin/mTOR and activats NF2 signaling pathways to reduce viability and proliferation of malignant meningioma cells. Bioengineered. 2021; 12(1): 755–762.
  • Ren L, Li Z, Dai C, Zhao D, Wang Y, Ma C, Liu C. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep. 2018; 17(3): 4376–4382.