Cytotoxic Properties, Anthocyanin and Furanocoumarin Content of Red-Pigments Obtained from Callistemon citrinus (Curtis) Skeels Flowers

Document Type : Original paper


1 Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran.

5 Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.


Background and objectives: There is growing interest in introducing safe and bioactive natural red pigments to the pharmaceutical and cosmetic industries. This study was designed to determine the phytochemical content and potential cytotoxicity of red pigment from Callistemon citrinus (Curtis) Skeels (syn. Melaleuca citrina (Curtis) Dum.Cours.) flowers. Methods: The flowers’ anthocyanin rich pigment was extracted with ethanol (70%, v/v) containing 0.5% formic acid. This extract was fractionated by a three-step process through a Sep-Pak C18 cartridge with water, ethyl acetate, and methanol, respectively. The anthocyanin and coumarin content of the red pigment was identified based on a reverse phase high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC/ESI-MS/MS). The MTT assay was used to assess the cytotoxicity of red pigment evaluated on normal human foreskin fibroblasts as well as two malignant cell lines: human breast cancer (MCF-7) and human fibrosarcoma cells (HT1080) at 24, 48 and 72 hours. Results: The anthocyanin compounds in the red pigment fraction were cyanidin (1), cyanidin 3,5-O-diglucoside (2), cyanidin 3-O-glucoside (3), and cyanidin 3-O-glucoside-8-ethyl-catechin (4). Flowers’ pigment also contained two furanocoumarins, including 8-(but-2-en-2-yl)-8,9-dihydro-2H-furo[2,3-h] chromen-2-one (or 15-methyl angenomallin, (5)) and 9-methyl-7H-furo[3,2-g] chromen-7-one (or 8-methylpsoralen, (6)). According to the MTT assays, the highest cytotoxic effect was observed on human foreskin fibroblasts with an IC50 values of <12.5 (µg/ mL, 24 h) and 85.2 (µg/ mL, 48 h). Conclusion: It might be assumed that application of the red pigment of C. citrinus in topical formulations and cosmetics should be done with caution due to the observed cytotoxicity on dermal fibroblasts.


Main Subjects

  • Leong HY, Show PL, Lim MH, Ooi CW, Ling TC. Natural red pigments from plants and their health benefits: a review. Food Rev Int. 2018; 34(5): 463–482.
  • Abdelhady MI, Kamal AM, Tawfik NF, Abdelkhalik SM. Polyphenolic constituents of the methanolic extract of Callistemon viridiflorous leaves and its antimicrobial activity. Pharmacogn Mag. 2012; 4(31): 47–53.
  • Nazreen S, Kaur G, Alam MM, Shafi S, Hamid H, Ali M, Alam MS. New flavones with antidiabetic activity from Callistemon lanceolatus Fitoterapia. 2012; 83(8): 1623–1627.
  • Jeong W, Hong SS, Kim N, Yang YT, Shin YS, Lee C, Hwang BY, Lee D. Bioactive triterpenoids from Callistemon lanceolatus. Arch Pharm Res. 2009; 32(6): 845–849.
  • Bar FMA. Genus Melaleuca-a review on the phytochemistry and pharmacological activities of the Non-volatile components. Rec Nat Prod. 2021; 15(4): 1–24.
  • Khanh PN, Duc HV, Huong TT, Son NT, Ha VT, Van DT, Tai BH, Kim JE, Jo AR, Kim YH. Alkylphloroglucinol derivatives and triterpenoids with soluble epoxide hydrolase inhibitory activity from Callistemon citrinus. Fitoterapia. 2016; 109: 39–44.
  • Cao JQ, Tian HY, Li MM, Zhang W, Wang Y, Wang L, Ye WC. Rearranged phloroglucinol-monoterpenoid adducts from Callistemon rigidus. J Nat Prod. 2018; 81(1): 57–62.
  • Lee CK. Leucadenone AD, the novel class flavanone from the leaves of Melaleuca leucadendron Tetrahedron Lett. 1999; 40(40): 7255–7259.
  • Park SY, Lim JY, Jeong W, Hong SS, Yang YT, Hwang BY, Lee D. C-methylflavonoids isolated from Callistemon lanceolatus protect PC12 cells against Aβ-induced toxicity. Planta Med. 2010; 76(9): 863–868.
  • Rattanaburi S, Mahabusarakam W, Phongpaichit S, Carroll AR. A new chromone from the leaves of Melaleuca cajuputi Nat Prod Res. 2013; 27(3): 221–225.
  • Oszmianski J, Lee C. Isolation and HPLC determination of phenolic compounds in red grapes. Am J Enol Vitic. 1990; 41(3): 204–206.
  • Giusti MM, Rodríguez-Saona LE, Griffin D, Wrolstad RE. Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization. J Agric Food Chem. 1999; 47(11): 4657–4664.
  • Yu J, Buslig BS, Haun C, Cancalon P. New furanocoumarins detected from grapefruit juice retentate. Nat Prod Res. 2009; 23(5): 498–506.
  • Jaina R, Jain SC, Bhagchandani T, Yadav N. New furanocoumarins and other chemical constituents from Ficus carica root heartwood. Z Naturforsch C J Biosci. 2013; 68(1-2): 3–7.
  • Andersen OM. Proportions of individual anthocyanins in the genus Metrosideros. Biochem Syst Ecol. 1988; 16(6): 535–539.
  • Li L, Zhang Y, Seeram NP. Structure of anthocyanins from Eugenia jambolana Nat Prod Commun. 2009; 4(2): 217–219.
  • Netzel M, Netzel G, Tian Q, Schwartz S, Konczak I. Native Australian fruits, a novel source of antioxidants for food. Innov Food Sci Emerg Technol. 2007; 8(3): 339–346.
  • Faria AF, Marques MC, Mercadante AZ. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011; 126(4): 1571–1578.
  • Longo L, Scardino A, Vasapollo G, Blando F. Anthocyanins from Eugenia myrtifolia Innov Food Sci Emerg Technol. 2007; 8(3): 329–332.
  • Batista ÂG, da Silva-Maia JK, Júnior MRM. Bioactive compounds of Red-Jambo fruit (Syzygium malaccense (L.) Merr. & LM Perry). In: Murthy HN, Bapat VA, Eds. Bioactive compounds in underutilized fruits and nuts. New York: Springer International Publishing, 2020.
  • Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly EJ. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem. 2008; 109(4): 883–890.
  • Seraglio SKT, Schulz M, Nehring P, Della Betta F, Valese AC, Daguer H, Gonzaga LV, Fett R, Costa ACO. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chem. 2018; 239: 649–656.
  • Chavez Carvajal P, Coppo E, Di Lorenzo A, Gozzini D, Bracco F, Zanoni G, Nabavi SM, Marchese A, Arciola CR, Daglia MM. Chemical characterization and in vitro antibacterial activity of Myrcianthes hallii (O. Berg) McVaugh (Myrtaceae), a traditional plant growing in Ecuador. Materials. 2016; 9(6): 1–14.
  • Rockenbach II, Jungfer E, Ritter C, Santiago-Schübel B, Thiele B, Fett R, Galensa R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res Int. 2012; 48(2): 848–855.
  • Saucier C, Guerra C, Pianet I, Laguerre M, Glories Y. (+)-Catechin—acetaldehyde condensation products in relation to wine-ageing. Phytochemistry. 1997; 46(2): 229–234.
  • Tarascou I, Mazauric JP, Meudec E, Souquet JM, Cunningham D, Nojeim S, Cheynier V, Fulcrand H. Characterisation of genuine and derived cranberry proanthocyanidins by LC–ESI-MS. Food Chem. 2011; 128(3): 802–810.
  • Brown E, Gill C, Stewart D, Mc Dougall G. Lingonberries (Vaccinium vitis-idaea L) and blueberries (Vaccinium corymbosum) contain discrete epicatechin anthocyanin derivatives linked by ethyl bridges. J Berry Res. 2016; 6(1): 13–23.
  • Laganà G, Barreca D, Smeriglio A, Germanò MP, D'Angelo V, Calderaro A, Bellocco E, Trombetta D. Evaluation of anthocyanin profile, antioxidant, cytoprotective, and anti-angiogenic properties of Callistemon citrinus Plants. 2020; 9(8): 1–14.
  • Hamedi A, Moheimani SM, Sakhteman A, Etemadfard H, Moein M. An overview on indications and chemical composition of aromatic waters (hydrosols) as functional beverages in Persian nutrition culture and folk medicine for hyperlipidemia and cardiovascular conditions. J Evid Based Complement Altern Med. 2017; 22(4): 544–561.
  • Heinke R, Franke K, Michels K, Wessjohann L, Ali NAA, Schmidt J. Analysis of furanocoumarins from Yemenite Dorstenia species by liquid chromatography/electrospray tandem mass spectrometry. J Mass Spectrom. 2012; 47(1): 7–22.
  • Evans FJ, Schmidt RJ. Plants and plant products that induce contact dermatitis. Planta Med. 1980; 38(4): 289–316.
  • Janusz SC, Schwartz RA. Botanical briefs: phytophotodermatitis is an occupational and recreational dermatosis in the limelight. Cutis. 2021; 107(4): 187–189.
  • Kou G, Zhang Y, Yang X, Rong R. O-methylnotopterol, a new natural product from the roots and rhizomes of Notopterygium incisum. Zhongguo Zhong Yao Za Zhi. 2010; 35(9): 1134–1136.
  • Hata K, Kozawa M, Ikeshiro Y. The constitution of anomalin, a new coumarin isolated from the root of Angelica anomala (umbelliferae). Chem Pharm Bull (Tokyo). 1966; 14(1): 94–96.
  • Martín T, Rubio B, Villaescusa L, Fernández L, Díaz AM. Polyphenolic compounds from pericarps of Myrtus communis. Pharm Biol. 1999; 37(1): 28–31.
  • Raju R, Singh A, Bodkin F, Münch G. Costatamins A–C, new 4-phenylcoumarins with anti-inflammatory activity from the Australian woodland tree Angophora costata (Myrtaceae). Fitoterapia. 2019; 133: 171–174.
  • Conforti F, Marrelli M, Menichini F, Bonesi M, Statti G, Provenzano E, Menichini F. Natural and synthetic furanocoumarins as treatment for vitiligo and psoriasis. Curr Drug Ther. 2009; 4(1): 38–58.
  • Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents. 2005; 5(1): 29–46.
  • Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects. Int J Mol Sci. 2020; 21(16): 1–20.
  • Hyun JW, Chung HS. Cyanidin and malvidin from Oryza sativa heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G2/M phase and induction of apoptosis. J Agric Food Chem. 2004; 52(8): 2213–2217.
  • Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, Aryan H, Nassiri F, Jangholi E. Cytotoxic and apoptogenic effects of cyanidin-3-glucoside on the glioblastoma cell line. World Neurosurg. 2017; 108: 94–100.
  • Nanashima N, Horie K, Maeda H, Tomisawa T, Kitajima M, Nakamura T. Blackcurrant anthocyanins increase the levels of collagen, elastin, and hyaluronic acid in human skin fibroblasts and ovariectomized rats. Nutrients. 2018; 10(4): 1–15.
  • Jafarpour M, Yousefi G, Hamedi A, Shariat A, Salehi A, Heydari M. Effect of a traditional syrup from Citrus medica fruit juice on migraine headache: a randomized double-blind placebo controlled clinical trial. J Ethnopharmacol. 2016; 179: 170–176.
  • Bracone F, De Curtis A, Di Castelnuovo A, Pilu R, Boccardi M, Cilla S, Macchia G, Deodato F, Costanzo S, Iacoviello L. Skin toxicity following radiotherapy in patients with breast carcinoma: is anthocyanin supplementation beneficial? Clin Nutr. 2021; 40(4): 2068–2077.
  • Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014; 7: 54–66.
  • Westfall A, Sigurdson GT, Rodriguez-Saona LE, Giusti MM. Ex vivo and in vivo assessment of the penetration of topically applied anthocyanins utilizing ATR-FTIR/PLS regression models and HPLC-PDA-MS. Antioxidants. 2020; 9(6): 486–500.
  • Selamoglu Z. Polyphenolic compounds in human health with pharmacological properties. J Tradit Med Clin Natur. 2017; 6(4): 1.
  • Wu W, Xie F, Zhang Y, Wang X, Xia L, Wu X, Gao Z. A novel regulatory function for miR-217 targetedly suppressing fibronectin expression in keloid fibrogenesis. Int J Clin Exp Pathol. 2018; 11(4): 1866–1877.
  • Šilhánová E, Plevová P, Čuřík R, Kasperčík I, Křepelová A. Elejalde syndrome, a case report. Am J Med Genet A. 2006; 140(20): 2223–2226.
  • Georgakis CDC, Falasca G, Georgakis A, Heymann WR. Scleromyxedema. Clin Dermatol. 2006; 24(6): 493–497.
  • Harris JE, Purcell SM, Griffin TD. Acral persistent papular mucinosis. J Am Acad Dermatol. 2004; 51(6): 982–988.