In silico Study of Some Natural Anthraquinones on Matrix Metalloproteinase Inhibition

Document Type : Original paper

Authors

1 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

2 Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

3 Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.

4 Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.

Abstract

Background and objectives: Matrix metalloproteinase-13 (MMP-13) is a proteolytic enzyme playing an important role in the activation of the MMP cascade, which seems to be vital in both bone metabolism and homeostasis. However, the up-regulation of MMP-13 is involved in developing several human disorders such as aggressive tumors, tooth decay, rheumatoid arthritis, osteoarthritis, skin ageing, and Alzheimer's disease. We performed a molecular docking analysis to discover the potential MMP-13 inhibitors in a total of 21 anthraquinone derivatives. Methods: The binding affinity of the tested compounds to the MMP-13 catalytic site was estimated by the Autodock 4.0 software. Moreover, the stability of the docked pose of the top-ranked compounds were examined using molecular dynamics simulations. Results: Pulmatin, sennidin A, emodin-8-glucoside, emodin, rhodoptilometrin, chrysophanol, knipholone, sennidin B, aloe emodin 8-glucoside, and aloe-emodin demonstrated considerable binding affinity to the MMP-13 active site. However, the molecular dynamics simulations showed that the docked poses of sennidin A and sennidin B were not considerably stable. Conclusion: The present study suggested that pulmatin, emodin-8-glucoside, emodin, rhodoptilometrin, chrysophanol, knipholone, aloe emodin 8-glucoside, and aloe-emodin may be considered as drug candidates for therapeutic applications in many human diseases. However, the validation of this finding is needed in the future.

Keywords


  • Jacobsen JA, Jourden JLM, Miller MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta Mol Cell Res. 2010; 1803(1): 72–94.
  • Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol. 2020; Article ID 20200036.
  • Wan Y, Li W, Liao Z, Yan M, Chen X, Tang Z. Selective MMP-13 inhibitors: promising agents for the therapy of osteoarthritis. Curr Med Chem. 2020; 27(22): 3753–3769.
  • Li NG, Shi ZH, Tang YP, Wang ZJ, Song SL, Qian LH, Qian DW, Duan JA. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Curr Med Chem. 2011; 18(7): 977–1001.
  • Moore BA, Aznavoorian S, Engler JA, Windsor LJ. Induction of collagenase-3 (MMP-13) in rheumatoid arthritis synovial fibroblasts. Biochim Biophys Acta. 2000; 1502(2): 307–318.
  • Leeman MF, Curran S, Murray GI. The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol. 2002; 37(3): 149–166.
  • Li JJ, Johnson AR. Selective MMP13 inhibitors. Med Res Rev. 2011; 31(6): 863–894.
  • Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res. 2006; 85(1): 22–32.
  • Hannas AR, Pereira JC, Granjeiro JM, Tjäderhane L. The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand. 2007; 65(1): 1–13.
  • Shimada Y, Ichinose S, Sadr A, Burrow M, Tagami J. Localization of matrix metalloproteinases (MMPs‐2, 8, 9 and 20) in normal and carious dentine. Aust Dent J. 2009; 54(4): 347–354.
  • Maciejczyk M, Pietrzykowska A, Zalewska A, Knaś M, Daniszewska I. The significance of matrix metalloproteinases in oral diseases. Adv Clin Exp Med. 2016; 25(2): 383–390.
  • Vasconcelos KR, Arid J, Evangelista S, Oliveira S, Dutra AL, Silva LAB, Segato RAB, Viera AR, Nelson-Filho P, Küchler EC. MMP13 contributes to dental caries associated with developmental defects of enamel. Caries Res. 2019; 53(4): 441–446.
  • Uzun M, Guvenalp Z, Kazaz C, Demirezer LO. Matrix metalloproteinase inhibitor and sunscreen effective compounds from Rumex crispus: isolation, identification, bioactivity and molecular docking study. Phytochem Anal. 2020; 31(6): 818–834.
  • Chu H, He QX, Wang JW, Deng YT, Wang J, Hu Y, Wang YQ, Lin Z. 3D-QSAR, molecular docking, and molecular dynamics simulation of a novel thieno[3,4-d] pyrimidine inhibitor targeting human immunodeficiency virus type 1 reverse transcriptase. J Biomol Struct Dyn. 2020; 38(15): 4567–4578.
  • Kumar Y, Singh H, Patel CN. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J Infect Public Health. 2020; 13(9): 1210–1223.
  • Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular docking analysis of flavonoid compounds with matrix metalloproteinase-8 for the identification of potential effective inhibitors. Lett Drug Des Discov. 2021; 18(1): 16–45.
  • Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, Zhu W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. Bio Rxiv. 2020; Article ID 921627.
  • Hosseini M, Chen W, Xiao D. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis Clin Med. 2021; 4(1): 1–16.
  • Chen W, Li A, Wang J, Zhong H, Yuan J, Luo Y, Ou J, Chen J, Li L. A combined approach of QSAR study, molecular docking and pharmacokinetics prediction of promising Amide-Ac6-aminoacetonitriles Cathepsin K inhibitors. J Mol Struct. 2021; Article ID 130772.
  • Choi J, Yun JS, Song H, Shin YK, Kang YH, Munashingha PR, Yoon J, Kim NH, Kim HS, Yook J. Prediction of african swine fever virus inhibitors by molecular docking-driven machine learning models. Molecules. 2021; 26(12): 1–12.
  • Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021; 39(9): 3347–3357.
  • Benalla W, Bellahcen S, Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr Diabetes Rev. 2010; 6(4): 247–254.
  • Tikhomirov AS, Shtil AA, Shchekotikhin AE. Advances in the discovery of anthraquinone-based anticancer agents. Recent Pat Anticancer Drug Discov. 2018; 13(2): 159–183.
  • Diaz-Munoz G, Miranda IL, Sartori SK, De Rezende DC, Diaz MA. Anthraquinones: an overview. Stud Nat Prod Chem. 2018; 58: 313–338.
  • Ji Y, Jiang C, Zhang X, Liu W, Gao M, Li Y, Wang J, Wang Q, Sun Z, Jiang Z. Necrosis targeted combinational theragnostic approach to treat cancer. Oncotarget. 2014; 5(10): 2934–2946.
  • Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020; 12(11): 1037–1069.
  • Nam J, Seol DW, Lee CG, Wee G, Yang S, Pan CH. Obtusifolin, an anthraquinone extracted from Senna obtusifolia (L.) H.S. Irwin & Barneby, reduces inflammation in a mouse osteoarthritis model. 2021; 14(3): 1–9.
  • Kowalczyk T, Sitarek P, Toma M, Picot L, Wielanek M, Skała E, Sliwinski T. An extract of transgenic Senna obtusifolia hairy roots with overexpression of PgSS1 gene in combination with chemotherapeutic agent induces apoptosis in the leukemia cell line. Biomolecules. 2020; 10(4): 1–20.
  • Xie L, Tang H, Song J, Long J, Zhang L, Li X. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol. 2019; 71(10): 1475–1487.
  • Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK. Chrysophanol: a natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules. 2019; 9(2): 1–24.
  • Ha MK, Song YH, Jeong SJ, Lee HJ, Jung JH, Kim B, Song HS, Huh JE, Kim SH. Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes. Biol Pharm Bull. 2011; 34(9): 1432–1437.
  • Liu Z, Lang Y, Li L, Liang Z, Deng Y, Fang R, Meng Q. Effect of emodin on chondrocyte viability in an in vitro model of osteoarthritis. Exp Ther Med. 2018; 16(6): 5384–5389.
  • Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z. The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 2005; 33: 233–237.
  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA. PubChem substance and compound databases. Nucleic Acids Res. 2016; 44(D1): 1202–1213.
  • Nara H, Kaieda A, Sato K, Naito T, Mototani H, Oki H, Yamamoto Y, Kuno H, Santou T, Kanzaki Discovery of novel, highly potent, and selective matrix metalloproteinase (MMP)-13 inhibitors with a 1, 2, 4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J Med Chem. 2017; 60(2): 608–626.
  • Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling withnam SWISS‐MODEL and Swiss‐PdbViewer: a historical perspective. Electrophoresis. 2009; 30(S): 162–173.
  • Laxmi D, Priyadarshy S. HyperChem 6.03. Biotech Software Internet Rep. 2002; 3(1): 5–9.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson A. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785–2791.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23(1-3): 3–25.
  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico A, Bader GD, Ideker T. A travel guide to cytoscape plugins. Nat Methods. 2012; 9(11): 1069–1076.
  • Zhu BL, Long Y, Luo W, Yan Z, Lai YJ, Zhao LG, Zhou WH, Wang YJ, Shen LL, Liu L. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain. 2019; 142(1): 176–192.
  • Balbín M, Pendás AM, Uría JA, Jiménez MG, Freije JP, López-Otín C. Expression and regulation of collagenase-3 (MMP-13) in human malignant tumors. Apmis. 1999; 107(1): 45–53.
  • Kamil M, Haque E, Mir SS, Irfan S, Hasan A, Sheikh S, Alam S, Ansari KM, Nazir M. Hydroxyl group difference between anthraquinone derivatives regulate different cell death pathways via nucleo-cytoplasmic shuttling of p53. Anticancer Agents Med Chem. 2019; 19(2): 184–193.
  • Seo EJ, Ngoc TM, Lee SM, Kim YS, Jung YS. Chrysophanol-8-O-glucoside, an anthraquinone derivative in rhubarb, has antiplatelet and anticoagulant activities. J Pharmacol Sci. 2012; 118(2): 245–254.
  • Park YJ, Lee KH, Jeon MS, Lee YH, Ko YJ, Pang C, Kim B, Chung KH, Kim KH. Hepatoprotective potency of chrysophanol 8-O-glucoside from Rheum palmatum against hepatic fibrosis via regulation of the STAT3 signaling pathway. Int J Mol Sci. 2020; 21(23): 1–12.
  • Siegers C, Von Hertzberg-Lottin E, Otte M, Schneider B. Anthranoid laxative abuse-a risk for colorectal cancer? Gut. 1993; 34(8): 1099–1101.
  • Muthusamy K, Prasad S, Nagamani S. Role of hydrophobic patch in LRP6: a promising drug target for Alzheimer's disease. Indian J Pharm Sci. 2016; 78(2): 240–251.
  • Wang W, Zhou Q, Liu L, Zou K. Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells. Pharmacol Rep. 2012; 64(5): 1216–1222.
  • Wang JB, Zhao HP, Zhao YL, Jin C, Liu DJ, Kong WJ, Fang F, Zhang L, Wang HJ, Xiao XH. Hepatotoxicity or hepatoprotection? pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum in treating rat liver injury. PLoS One. 2011; 6(9): 1–8.
  • Naqvi S, Ullah M, Hadi S. DNA degradation by aqueous extract of Aloe vera in the presence of copper ions. Indian J Biochem Biophys. 2010; 47(3): 161–165.
  • Lee MH, Kao L, Lin CC. Comparison of the antioxidant and transmembrane permeative activities of the different Polygonum cuspidatum extracts in phospholipid-based microemulsions. J Agric Food Chem. 2011; 59(17): 9135–9141.
  • Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013; 341(2): 139–149.
  • Wei WT, Lin SZ, Liu DL, Wang ZH. The distinct mechanisms of the antitumor activity of emodin in different types of cancer. Oncol Rep. 2013; 30(6): 2555–2562.
  • Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligeqi, Ni J. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016; 30(8): 1207–1218.
  • Matsuda Y, Yokohira M, Suzuki S, Hosokawa K, Yamakawa K, Zeng Y, Ninomiya F, Saoo K, Kuno T, Imaida K. One-year chronic toxicity study of Aloe arborescens Miller var. natalensis Berger in Wistar Hannover rats. A pilot study. Food Chem Toxicol. 2008; 46(2): 733–739.
  • Hou J, Gu Y, Zhao S, Huo M, Wang S, Zhang Y, Qiao Y, Li X. Anti-inflammatory effects of aurantio-obtusin from seed of Cassia obtusifolia through modulation of the NF-κB pathway. Molecules. 2018; 23(12): 1–15.
  • Wang H, Yang D, Li L, Yang S, Du G, Lu Y. Anti-inflammatory effects and mechanisms of rhein, an anthraquinone compound, and its applications in treating arthritis: a review. Nat Prod Bioprospecting. 2020: 10(6): 445–452.
  • Ding QH, Ye CY, Chen EM, Zhang W, Wang XH. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo. Int Immunopharmacol. 2018; 61: 222–230.
  • Kshirsagar AD, Panchal PV, Harle UN, Nanda RK, Shaikh HM. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents. Int J Inflamm. 2014; Article ID 690596.
  • Xu L, Chan Co, Lau CC, Yu Z, Mok DK, Chen S. Simultaneous determination of eight anthraquinones in semen Cassiae by HPLC‐ Phytochem Anal. 2012; 23(2): 110–116.
  • Tang Y, Zhong ZY, Liu YF, Sheng GT. Obtusifolin inhibits high glucose‑induced mitochondrial apoptosis in human umbilical vein endothelial cells. Mol Med Rep. 2018; 18(3): 3011–3019.
  • Kim DH, Hyun SK, Yoon BH, Seo JH, Lee KT, Cheong JH, Jung SY, Jin C, Choi JS, Ryu JH. Gluco-obtusifolin and its aglycon, obtusifolin, attenuate scopolamine-induced memory impairment. J Pharmacol Sci. 2009; 111(2): 110–116.
  • Hsu YL, Tsai EM, Hou MF, Wang TN, Hung JY, Kuo PL. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein. J Agric Food Chem. 2014; 62(49): 11933–11940.
  • Lin YY, Tsai SJ, Chiang MY, Wen ZH, Su JH. Anti-inflammatory anthraquinones from the crinoid Himerometra magnipinna. Nat Prod Commun. 2015; 10(2): 317–318.
  • Shao N, Yao G, Chang LC. Bioactive constituents from the marine crinoid Himerometra magnipinna. J Nat Prod. 2007; 70(5): 869–871.
  • Wright AD, Nielson JL, Tapiolas DM, Motti CA, Ovenden SP, Kearns PS, Liptrot CH. Detailed NMR, including 1, 1-ADEQUATE, and anticancer studies of compounds from the echinoderm Colobometra perspinosa. Mar Drugs. 2009; 7(4): 565–575.
  • Tseng CC, Lai YC, Kuo TJ, Su JH, Sung PJ, Feng CW, Lin YY, Chen PC, Tai MH, Cheng SY. Rhodoptilometrin, a crinoid-derived anthraquinone, induces cell regeneration by promoting wound healing and oxidative phosphorylation in human gingival fibroblast cells. Mar Drugs. 2019; 17(3): 1–20.
  • Hellyer P, Beighton D, Heath M, Lynch E. Root caries in older people attending a general dental practice in East Sussex. Br Dent J. 1990; 169(7): 201–206.
  • Al‐Wahadni A, Linden GJ. Dentine hypersensitivity in Jordanian dental attenders: a case control study. J Clin Periodontol. 2002; 29(8): 688–693.
  • Kassab MM, Cohen RE. The etiology and prevalence of gingival recession. J Am Dent Assoc. 2003; 134(2): 220–225.
  • Malik S, Sharma N, Sharma UK, Singh NP, Bhushan S, Sharma M, Sinha AH, Ahuja PS. Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi plants. J Plant Physiol. 2010; 167(9): 749–756.
  • Sun SW, Yeh PC. Analysis of rhubarb anthraquinones and bianthrones by microemulsion electrokinetic chromatography. J Pharm Biomed Anal. 2005; 36(5): 995–1001.
  • Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F, Qingyun Z. Retraction note to: chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2021; 394(3): 577–578.
  • Ni CH, Yu CS, Lu HF, Yang JS, Huang HY, Chen PY, Wu SH, Ip SW, Chiang SY, Lin JG. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. Environ Toxicol. 2014; 29(7): 740–749.
  • Deng M, Xue Y, Xu L, Wang Q, Wei J, Ke X, Wang J, Chen X. Chrysophanol exhibits inhibitory activities against colorectal cancer by targeting decorin. Cell Biochem Funct. 2020; 38(1): 47–57.
  • Shen L, Yang W. Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks. J Chem Theory Comput. 2018; 14(3): 1442–1455.
  • Hsu PC, Cheng CF, Hsieh PC. Chrysophanol regulates cell death, metastasis, and reactive oxygen species production in oral cancer cell lines. Evid Based Complement Alternat Med. 2020; Article ID 5867064.
  • Chung PC, Hsieh PC, Lan CC, Hsu PC, Sung MY, Lin YH, Tzeng IS, Chiu V, Cheng CF, Kuo CY. Role of chrysophanol in epithelial-mesenchymal transition in oral cancer cell lines via a Wnt-3-dependent pathway. Evid Based Complement Altern Med. 2020; Article ID 8373715.
  • Ren L, Li Z, Dai C, Zhao D, Wang Y, Ma C, Liu C. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep. 2018; 17(3): 4376–4382.
  • Park S, Lim W, Song G. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways. Toxicol Appl Pharmacol. 2018; 360: 201–211.
  • Lu L, Li K, Mao YH, Qu H, Yao B, Zhong WW, Ma B, Wang ZY. Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int J Oncol. 2017; 51(4): 1089–1103.
  • Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, Kuo CL, Lu HF, Lee TH, Wood WG, Chung JG. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res. 2010; 54(7): 967–976.
  • Ni CH, Chen PY, Lu HF, Yang JS, Huang HY, Wu SH, Ip SW, Wu CT, Chiang SY, Lin JG, Wood WG, Chung JG. Chrysophanol-induced necrotic-like cell death through an impaired mitochondrial ATP synthesis in Hep3B human liver cancer cells. Arch Pharm Res. 2012; 35(5): 887–895.
  • Trybus W, Król T. The potential antitumor effect of chrysophanol in relation to cervical cancer cells. J Cell Biochem. 2021; 122(6): 639–652.