Electrophysiological, Behavioral and Molecular Study of Vitamin E and Ginkgo biloba in a Rat Model of Alzheimer’s Disease

Document Type : Original paper


1 Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

2 Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

3 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.


Background and objectives: Alzheimer's disease (AD) is characterized by progressive cognitive decline. Oxidative stress plays a central role in the pathogenesis of AD. It has been proposed that administration of antioxidants affect cognitive processes, such as learning and memory. This study investigated the protective effects of vitamin E and Ginkgo biloba extract (as antioxidants) on learning and memory, hippocampal plasticity, and apoptotic marker proteins in a rat model of AD. Methods: The hyroalcoholic extract of Gingko biloba leaves wasprepared using maceration method. Male Wistar rats were randomly divided into six groups: control, sham received intra-hippocampal injection (I.H.P) of vehicle, AD model that received intra-hippocampal injection of the beta-amyloid (Aβ), AD+ vitamin E (200 mg/kg, i.p.), AD+ G. biloba (100 mg/kg/p.o.), and AD+ vitamin E (200 mg/kg, i.p.)+ G. biloba (100 mg/kg/p.o.). At the end of the treatments, the rats were subjected to the passive avoidance learning (PAL) test. The field long wterm potentials (LTP) were recorded in the hippocampal dentate gyrus. Hippocampal expressions of Bax and Bcl-2 (as pro-apoptotic, as anti-apoptotic) proteins were measured by western blot method. Results: Treatment with G. biloba and vitamin E improved the Aβ-induced memory impairment in the PAL task. Vitamin E and/or G. biloba extract enhanced the population spike amplitude evoked potentials of the LTP components, vitamin E and/or G. biloba extract increased Bcl-2 expression and decreased Bax expression in the hippocampus. Conclusion: Ginkgo biloba and vitamin E could suppress the expression of apoptosis markers and improved hippocampal LTP impairment and the memory deficit induced by Aβ.


Main Subjects

[1] Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol. 2012; Article ID a005777.
[2] Imtiaz B, Tolppanen AM, Kivipelto M, Soininen H. Future directions in Alzheimer's disease from risk factors to prevention. Biochem Pharmacol. 2014; 88(4): 661-670.
[3] Waite LM. Treatment for Alzheimer’s disease: has anything changed? Aust Prescr. 2015; 38(2): 60-63.
[4] Allgaier M, Allgaier C. An update on drug treatment options of Alzheimer's disease. Front Biosci (Landmark Ed). 2014; 19: 1345-1354.
[5] Wimo A, Ballard C, Gauthier S, Handels R, Jones RW, Jonsson L, Khachaturian AS, Kramberger M. Health economic evaluation of treatments for Alzheimer′ s disease: impact of new diagnostic criteria. J Intern Med.  2014; 275 (3): 304-316.
[6] Antollini SS, Fabiani C. Alzheimer’s disease as a membrane disorder: spatial cross-talk among beta-amyloid peptides, nicotinic acetylcholine receptors and lipid rafts. Front Cell Neurosci. 2019; 13: 1-28.
[7] Olton DS, Walker JA, Gage FH. Hippocampal connections and spatial discrimination. Brain Res. 1978; 139(2): 295-308.
[8] Uzakov SS, Ivanov AD, Salozhin SV, Markevich VA, Gulyaeva NV. Lentiviral-mediated overexpression of nerve growth factor (NGF) prevents beta-amyloid [25-35]-induced long term potentiation (LTP) decline in the rat hippocampus. Brain Res. 2015; 1624: 398-404.
[9] Bliss TV, Lomo T. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331-356.
[10] Mango D, Saidi A, Cisale GY, Feligioni M, Corbo M, Nisticò R. Targeting synaptic plasticity in experimental models of alzheimer’s disease. Front Pharmacol. 2019; 10(1): 1-8.
[11] Monfort P, Felipo V. Amyloid-β impairs, and ibuprofen restores, the cGMP pathway, synaptic expression of AMPA receptors and long-term potentiation in the hippocampus. J Alzheimers Dis. 2010; 22(3): 780-795.
[12] Plant LD, Webster NJ, Boyle JP, Ramsden M, Freir DB. Amyloid β peptide as a physiological modulator of neuronal ‘A’-type K+ current. Neurobiol Aging. 2006; 27(11): 1673-1683.
[13] Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA. Subcellular and metabolic examination of amyloid-β peptides in alzheimer disease pathogenesis: evidence for Aβ25-35. Exp Neurol. 2010; 221(1): 26-37.
[14] Chen JX, Yan SD. Amyloid-β-induced mitochondrial dysfunction. J Alzheimers Dis. 2007; 12(2): 177-184.
[15] Hara A, Hirose Y, Wang A, Yoshimi N, Tanaka T, Mori H. Localization of bax and Bcl-2 proteins, regulators of programmed cell death, in the human central nervous system. Virchows Arch. 1996; 429(4-5): 249-253.
[16] Vogel MW. Cell death, Bcl-2, bax, and the cerebellum. Cerebellum. 2002;1(4): 277-278.
[17] Yadav RS, Tiwari NK. Lipid integration in neurodegeneration: an overview of alzheimer’s disease. Mol Neurobiol. 2014; 50(1): 168-176.
[18] Zhao L, Zhu L, Guo X. Valproic acid attenuates Aβ25-35-induced neurotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Biomed Pharmacother. 2018; 106: 77-82.
[19] Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, Misiti F. Alzheimer’s amyloid β-peptide (1-42) induces cell death in human neuroblastoma via Bax/Bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun. 2006; 342(1): 206-213.
[20] Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A. Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons. J Neurosci. 1996; 16(23): 7533-7539.
[21] Rizvi S, Raza ST, Faizal Ahmed AA, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014; 14(2): 157-165.
[22] Kiasalari Z, Khalili M, Shafiee S, Roghani M. The effect of vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats. Indian J Pharmacol. 2016; 48(1): 11-14.
[23] Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, Shahidi S, Sarihi A. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res. 2015; 1629: 270-281.
[24] Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of Alzheimer’sdisease: evidence from animal models. Int J Mol Sci. 2017; 18(12): 1-21.
[25] Rosales‐Corral S, Tan DX, Reiter RJ, Valdivia‐Velázquez M, Martínez‐Barboza G, Pablo Acosta‐Martínez J, Ortiz GG. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid‐β peptide inrat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res. 2003; 35(2): 80-84.
[26] Xie Z, Sastry BR. Impairment of long-term potentiation in rats fed with vitamin E-deficient diet. Brain Res. 1995; 681(1-2): 193-196.
[27] Canevelli M, Adali N, Kelaiditi E, Cantet C, Ousset PJ, Cesari M. Effects of Gingko biloba supplementation in Alzheimer's disease patients receiving cholinesterase inhibitors: data from the ICTUS study. Phytomed. 2014; 21(6): 888-892.
[28] Liu YL, Zhou Y, Sun L, Wen JT, Teng SJ, Yang L, Du DS . Protective effects of Gingko biloba extract 761 on myocardial infarction via improving the viability of implanted mesenchymal stem cells in the rat heart. Mol Med Rep. 2014; 9(4): 1112-1120.
[29] Koz ST, Baydas G, Koz S, Demir N, Nedzvetsky VS. Gingko biloba extract inhibits oxidative stress and ameliorates impaired glial fibrillary acidic protein expression, but can not improve spatial learning in offspring from hyperhomocysteinemic rat dams. Phytother Res. 2012; 26(7): 949-955.
[30] Osman NN, Alanbari KH, Al-Shreef HA. Evaluation of the possible antioxidant effects of Peganum harmala and Ginko biloba in ameliorating Alzheimer’s disease in rat model. Inter J Pharm Sci Res. 2018; 9(8): 3189-3198.
[31] Zhang LD, Ma L, Zhang L, Dai JG, Chang LG, Huang PL, Tian XQ. Hyperbaric oxygen and Ginkgo biloba extract ameliorate cognitive and memory impairment via nuclear factor kappa-b pathway in rat model of Alzheimer’s disease. Chin Med J. 2015; 128(22): 3088-3093.
[32] Santos RF, Galduroz JC, Barbieri A, Castiglioni ML, Ytaya LY, Bueno OF. Cognitive performance, SPECT, and blood viscosity in elderly non-demented people using Ginkgo biloba. Pharmacopsychiatry. 2003; 36(4): 127-133.
[33] Boveris AD, Galleano M, Puntarulo S. In vivo supplementation with Ginkgo biloba protects membranes against lipid peroxidation. Phytother Rese. 2007; 21(8): 735-740.
[34] Kehr J, Yoshitake S, Ijiri S, Koch E, Nöldner M, Yoshitake T. Ginkgo biloba leaf extract (EGb 761®) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possibleimplications for the cognitive enhancing properties of EGb 761®. Int Psychogeriatr. 2012; 24(S1): 25-34.
[35] Yoshitake T, Yoshitake S, Kehr J. The Ginkgo biloba extract EGb 761® and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol. 2010; 159(3): 659-668.
[36] Stephan  A, Phillips A. A case for a non‐transgenic animal model of Alzheimer's disease. Genes Brain Behav. 2005; 4(3): 157-172.
[37] Shen CL, Murphy RM. Solvent effects on self-assembly of beta-amyloid peptide. Biophys J. 1995; 69(2): 640-651.
[38] Wang XJ, Song XJ, Gao PH, Zhou XY, Zhou SN. Estradiol prevents Aβ25 35-inhibited long-term potentiation induction through enhancing survival of newborn neurons in the dentate gyrus. Int J Neurosci. 2016; 126(2): 154-162.
[39] Armutcu F, Coskun Ö, Gürel A, Sahin S, Kanter M, Cihan A, Numanoglu KV, Altınyazar C. Vitamin E protects against acetone-induced oxidative stress in rat red blood cells. Cell Biol Toxicol. 2005; 21(1): 53-60.
[40] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press, 1998.
[41] Shahidi S, Asl SS, Komaki A, Hashemi-Firouzi N. The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat. Psychopharmacology. 2018; 235(5): 1513-1525.
[42] Lashgari R, Khakpour-Taleghani B, Motamedi F, Shahidi S. Effects of reversible inactivation of locus coeruleus on long-term potentiation in perforant path-DG synapses in rats. Neurobiol Learn Mem. 2008; 90(2): 309-316.
[43] Hashemi-Firouzi N, Komaki A, Soleimani Asl S, Shahidi S.The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer's disease. Brain Res Bull. 2017; 135: 85-91.
[44] Tahmasebi L, Komaki A, Karamian R, Shahidi S, Sarihi A, Salehi I, Nikkhah A. The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats. Eur J Pharmacol. 2015; 757: 68-73.
[45] Tortosa A, López E, Ferrer I. Bcl-2 and bax protein expression in Alzheimer’s disease. Acta Neuropathologica. 1998; 95(4): 407-412.
[46] Li Q, Che HX, Wang CC, Zhang LY, Ding L, Xue CH, Zhang TT, Wang YM. Cerebrosides from sea cucumber improved Aβ1-42‐induced cognitive deficiency in a rat modelof Alzheimer's disease. Mol Nutr Food Res. 2019; Article ID1800707.
[47] Sun P, Yin JB, Liu LH, Guo J, Wang SH, Qu CH, Wang CX. Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep. 2019; 39(1): 1-10.
[48] Das A, Shanker G, Nath C, Pal R, Singh S, Singh HK. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav. 2002; 73(4): 893-900.
[49] Chopin P, Briley M. Effects of four non-cholinergic cognitive enhancers in comparison with tacrine and galanthamine on scopolamine-induced amnesia in rats. Psychopharmacology. 1992; 106(1): 26-30.
[50] Zeng K, Li M, Hu J, Mahaman YA, Bao J, Huang F, Xia Y, Liu X, Wang Q, Wang JZ, Yang Y. Ginkgo biloba extract EGb761 attenuates hyperhomocysteinemia-induced AD like tau hyperphosphorylation and cognitive impairment in rats. Curr Alzheimer Res. 2018; 15(1): 89-99.
[51] Li ZY, Chung YH, Shin EJ, Dang DK, Jeong JH, Ko SK, Nah SY, Baik TG, Jhoo JH, Ong WY, Nabeshima T. YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J Neuroinflammation. 2017; 14(1): 1-22.
[52] Wang SJ, Chen HH. Ginkgolide B, a constituent of Ginkgo biloba, facilitates glutamate exocytosis from rat hippocampal nerve terminals. Eur J Pharmacol. 2005; 514(2-3): 141-149.
[53] Blecharz-Klin K, Piechal A, Joniec I, Pyrzanowska J, Widy-Tyszkiewicz E. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol Exp (Wars). 2009; 69(2): 217-231.
[54] Zhang LY, Wang YL. Effects of EGb761 on hippocamal synaptic plasticity of vascular dementia rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2008; 24(1): 36-40.
[55] Wang Y, Wang L, Wu J, Cai J. The in vivo synaptic plasticity mechanism of EGb 761‐induced enhancement of spatial learning and memory in aged rats. Br JPharmacol. 2006; 148(2): 147-153.
[56] Williams B, Watanabe CM, Schultz PG, Rimbach G, Krucker T. Age-related effects of Ginkgo biloba extract on synaptic plasticity and excitability. Neurobiol Aging. 2004; 25(7): 955-962.
[57] Tian X, Zhang L, Wang J, Dai J, Shen S, Yang L, Huang P. The protective effect of hyperbaric oxygen and Ginkgo biloba extract on Aβ25-35-induced oxidative stress and neuronal apoptosis in rats. Behav Brain Res. 2013; 242: 1-8.
[58] Lu G, Wu Y, Mak YT, Wai SM, Feng ZT, Rudd JA, Yew DT. Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using Bax/Bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain prone-8. Brain Res. 2006; 1090(1): 23-28.
[59] Wang Y, Wang R, Wang Y, Peng R, Wu Y, Yuan Y.  Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/bax signaling. Drug Des Devel Ther. 2015; 9: 6303-6317.
[60] Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci. 2000; 12(6): 1882-1890.
[61] Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H, Butko P. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA. 2002; 99(19): 12197-12202.
[62] Ishrat T, Parveen K, Hoda MN, Khan MB, Yousuf S, Ansari MA, Saleem S, Islam F. Effects of pycnogenol and vitamin E on cognitive deficits and oxidative damage induced by intracerebroventricular streptozotocin in rats. Behav Pharmacol. 2009; 20(7): 567-575.
[63] Sayyahi A, Jahanshahi M, Amini H, Sepehri H. Vitamin E can compensate the density of M1 receptors in the hippocampus of scopolamine-treated rats. Folia Neuropathol. 2018; 56(3): 215-228.
[64] Baghcheghi Y, Beheshti F, Shafei MN, Salmani H, Sadeghnia HR, Soukhtanloo M, Anaeigoudari A, Hosseini M. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats. Metab Brain Dis. 2018; 33(3): 713-724.
[65] An HM, Tan YL, Shi J, Wang Z, Lv MH, Soares JC, Zhou D, Yang F, Zhang XY. Ginkgo biloba leaf extract and alpha-tocopherol attenuate haloperidol-induced orofacial dyskinesia in rats: possible implication of antiapoptotic mechanisms by preventing Bcl-2 decrease and bax elevation. Phytomedicine. 2016; 23(13): 1653-1660.