Supplementary table.	Pharmacological activities of di	fferent Cymbopogon species

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
Cymbopogon ambiguus	Anti-platelet	Whole plants	Dichloromethane extract	$\begin{array}{l} 2.8{\times}10^{-6} \text{ to } 2.8{\times}10^{-4} \text{ M}, \\ 1.7{\times}10^{-4} \text{ to } 3.5{\times}10^{-3} \text{ M} \end{array}$	In vitro: platelet aggregation and [14C]-5HT release bioassays	Dose-dependent inhibition of ADP-induced human platelet serotonin release by eugenol and elemicin, with more potent activity of eugenol (IC_{50} =46.6 µm)	[1]
	Larvicidal	Leaves	Ethanolic and aqueous extracts	5,10,20,30,40 mg/mL	In vitro: larvicidal bioassay against fourth instar larvae of <i>Culex</i> <i>quinquefasciatus</i>	Mean mortality of 90% and 100% larvae exposed to aqueous and ethanolic extracts respectively. LD ₅₀ for ethanolic extract after 24, 48 and 72 h exposure: 2.4, 1.90, and 1.90, respectively	[2]
	Antibacterial	Leaves	Methanolic extract	25–150 mg/mL	In vitro: agar disk-diffusion method	Antibacterial effect against Bacillus cereus, Bacillus licheniformis, Pseudomonas aeruginosa and Escherichia coli. The max activity against B. Cereus followed by B. Licheniformis, P. Aeruginosa and E. Coli, respectively	[3]
	Antiviral	-	Methanolic extracts	5, 10, 20, 40, 80 and 160 $\mu g/mL$	In vitro: cytotoxic assessment by MTT assay; antiviral activity in Huh7it-1 cell infected by DENV	98.9 %inhibition of DENV-2 at dose of 20 µg/mL	[4]
	Insecticidal	-	EO	8.1, 16.2, 31.2, 62.5, 125, and 250 μg/insect	In vivo: toxicity test on thorax of instar nymphs; respiration rate bioassays; locomotion behavior test	[↑] Toxicity from first- to fifth-instar nymphs; Irritability or repel of nymphs; tolerability of <i>Podisus nigrispinus</i> adults to the EO and its constituents; alteration of respiratory activity with geranyl acetate and irritation and repel by citral	[5]
Cymbopogon citratus	Anti-proliferative	Leaves	EO	8 mg/mL	In vitro: DPPH radical scavenging activity; ABTS radical cation decolorization assay; lipoxygenase type I-B inhibiting activity; MTT assay on prostate cancer cell lines (LNCaP and PC-3) and glioblastoma cell lines (SF-767 and SF-763)	Antioxidant activity; lipoxygenase inhibition (98.22%); anti-proliferative activity: IC ₅₀ for lncap:6.34 mg/mL, for PC-3: 32.1 mg/mL, For SF-767: 45.1 mg/mL and for SF- 763:172.1 mg/mL	[6]
-	Lipid-lowering	Whole plant	Aqueous extract	250, 500 and 1000 mg/kg	In vivo: Sprague-Dawley rats orally treated with extract; invitro-DPPH assay; Western blot analysis	↓total cholesterol, LDL, atherogenic index, and expression of genes and protein of sterol regulatory element binding protein-1c (SREBP1c) and HMG-COA reductase (HMGR); ↑serum antioxidant capacity	[7]
-	Antituberculosis	Leaves	EO	1.250-19.53 μg/mL.	In vitro: REMA microdilution method	Inhibition of the growth of Mycobacterium tuberculosis	[8]
-	Antibacterial and antifungal	Aerial parts	Methanol extract	200-400 μg/mL	In vitro: antibacterial activity studied by 96 Well Plate Method against Escherichia Coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi; Antifungal activity studied by Agar Tube dilution against Trichophyton longifusis, Candida albicans, Candida glabarata, Fusarium solani, Microsporum canis, Aspergillus flavus	Antibacterial activity against <i>Bacillus subtilis</i> and <i>Staphylococcus aureus;</i> no antifungal activity	[9]

Supplementary	table.	Continued
---------------	--------	-----------

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Antioxidant	-	Infusion	ND^1	In vitro: DPPH radical scavenging activity, reducing power, β-carotene bleaching inhibition and lipid peroxidation inhibition by TBARS assay	Higher antioxidant activity than the standard with lower EC_{50} values in the four assays	[10]
	Gastric ulcer healing	Aerial parts	EO	1–100 mg/kg	In vivo: acute ethanol-induced ulcer and chronic acetic acid-induced ulcer in mice In vitro: determination of the H ⁺ ,K ⁺ - ATPase activity	↓Ulcer area by EO and geraniol but not by citral; ↑gastric healing process; inhibition of H ⁺ / K ⁺ - atpase activity by EO and citral	[11]
	Antioxidant and antifungal	Leaves	EO	15.6, 31.2, 62.5, 125, 175,250, 350, 500, 700, 1000 and 2000 mg/mL	Invitro: DDPH assay, broth microdilution method, antifungal activity against <i>Candida</i> <i>albicans, C. tropicalis, C. krusei, C.</i> <i>glabrata, C. parapsilosis</i> and <i>C.</i> <i>famata</i> which were obtained from urine samples of patients admitted to the intensive care unit	MIC:125 to 175 µg/mL (for different <i>Candida</i> species; MFC (minimum fungicidal concentration): 175 to 350 µg/mL; Potent radical Scavenging power	[12]
	Anti-memory decline	Leaves	Aqueous extract	25, 50, and 100 mg/kg	In vivo: effect on spatial and non- spatial memory and scopolamine- induced amnesia in male Swiss mice using the Y-maze test (YMT) and objection recognition test (ORT)	↑% alternation behavior in the YMT and index of recognition memory in the ORT; ↓SCO-induced memory deficits and scopolamine-induced increased acetylcholinesterase activity and alteration of brain levels of MDA and GSH	[13]
	Antioxidant	Leaves	Aqueous, ethanolic and EO	10–500 mg/mL, 1–100 mg/mL, 200 mg/mL	Invitro: DPPH method, ABTS+ method, reducing power assay, hypochlorous acid (HOCl) scavenging assay, the ability to prevent Fe(II)/H2O2 induced deoxyribose decomposition	Great antioxidant activity; the ethyl acetate fraction presented a high polyphenolic content and inhibited TBARS production in phospholipids comparable to vitamin E	[14]
	Antituberculosis	Stems and rhizomes	methanolic extract	200 μg/mL, 1600 μg/mL	Invitro: MIC value against M. tuberculosis H37Rv using a colorimetric tetrazolium microdilution assay; integrity of mycobacterial cells was observed under a scanning electron microscope (SEM)	Reduction of 90.28% in colony count of <i>M.</i> <i>Tuberculosis</i> by n-hexane fraction; alteration of normal mycobacterial cellular structure and cell lysis	[15]
	Antidiabetic	Leaves	Aqueous extract	20, 40, 60, 80, 100 µg/mL	Invitro: alpha-amylase inhibitory assay and glucose diffusion- inhibitory assay	Inhibitory effect on the α-amylase in a dose- dependent manner	[16]

¹ Not defined

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Giardicidal	Leaves	Aqueous extract	25,50,100,200,40,500 mg/mL 125,250,500 mg/kg/day	Invitro: DPPH free radical scavenging assay; In vivo: Inducing infection, each mouse received <i>G. lamblia</i> cysts by orogastric gavage	The IC ₅₀ value for scavenging DPPH free radical :16.4 ± 0.1 mg/mL; ↓Giardia trophozoites growth; 100% stool clearance of <i>G. Lamblia</i> stages by 500 mg/kg extract similar to metronidazole-treated group; MIC/24 h and IC50/24 h were 500 and 93.8 μg/mL, respectively	[17]
	Mosquito repellents, as inhibitor of the Ross River virus	Leaves	EO	1130 µg/mL	Invitro: determination of the viability of HEK293T cells by an MTT assay after infected by Ross River virus - T48	↓ Cytopathic effect but not displayed virucidal activity; ↓ viral replication and infectivity when applied prior, during and early after viral adsorption	[18]
	Anti- neuroinflammatory	Leaves	low molecular weight polysaccharide fraction	12.5-100 μg/mL	In vitro: Inhibition of lipopolysaccharide (LPS)- induced neuroinflammatory response in raw 264.7 macrophages and U87 glioblastoma cells through MTT assay	↑U87-MG proliferation and viability; ↓induction of nitrite; ↑intracellular ROS; ↓over-expressions of IL-6, IL-1β, NF-kb and TNF-α; ↓production of IL-6 and IL-1β in LPS-induced U87-MG cells by inhibiting NF- κb activation	[19]
	Antiviral	ND	EO	6 to 12 μg/mL, 12 to 25 μg/mL	Invitro: effect of EO on the HIV-1 Tat/TAR-RNA complex by electrophoretic mobility shift assay (EMSA); effects of EOs on Tat-dependent HIV-1 LTR transcription, HL3T1 cell line was used as an experimental model mimicking viral latency reactivation	↓ Viral transcription to 60% when administered at 0.65 μg/mL, IC ₅₀ :0.61 μg/mL; no effect on band intensity and did not cause a delay in TAR-RNA migration	[20]
	Anti-herpetic	Leaves	EO	250µg/mL	Invitro: HSV-1 and HSV-2 titer reduction	Very high inhibitory potential against both viral types	[16]
	Anti-inflammatory and antioxidant	Leaves	Flavonoids-rich ethyl acetate extract	100 mg/kg	In vivo: sodium nitrite (NaNO2) induced oxidative stress in male albino Wistar rats	↑Serum protein, WBC count, GSH level, CAT and SOD activities and ↓MDA levels	[21]
	Anticancer	Stems	Ethanolic and aqueous extracts	80 mg/kg/day	In vivo: lymphoma xenograft model in immunocompromised CD-1male mice In vitro: cytotoxicity of extracts on various Hodgkin and non-Hodgkin's lymphoma cell linesmy using watersoluble tetrazolium-1 (WST-1) assay, annexin V binding assay and propidium iodide staining fluorescent JC-1 assay	↓ Tumor growth in human lymphoma xenograft models, ↓ viability of lymphoma cell lines in a dose-dependent manner; Induction of apoptosis in lymphoma cells And no observable apoptotic induction in normal human fibroblast cells; mitochondrial depolarization, ↓ rates of oxygen consumption in lymphoma cells; induction of ROS production in several blood cancer cell lines	[22]

nt	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anticlastogenic	Bulbs and leaves	Decoction	0.5 mL/20 g of body weight	In vivo: clastogen-induced female albino rats by tetracycline; genotoxicity was studied by micronucleus test	↓ Micronucleated polychromatic erythrocytes; not any adverse effects such as tachycardia, arrhythmia and hyperpnea detected	[23]
	Anti-inflammatory and antioxidant	Leaves	Methanolic extract	100 mg/kg	In vivo: male albino Wistar rats intoxicated with sodium nitrite	↑Serum protein, WBC, GSH, CAT and SOD activities and ↓ serum TP,TNF-α, CRP, and MDA	[21]
	Antioxidant and cytoprotective	Leaves	EO	25–100 μg/mL	Invitro: DPPH assay, phosphomolybdenum assay, itric oxide scavenging activity, superoxide anion scavenging assay, reducing power assay, hydrogen peroxide scavenging assay, MTT assay, LDH leakage assay, nitrobluetetrazolium (NBT) reduction assay, TBARS assay	Greater antioxidant property than L-ascorbic acid; free radical scavenging and cytoprotective activity	[24]
	Anti- trypanosomal	-	EO	100 and 250 mg/kg	In vivo: Swiss mice were inoculated with metacyclic trypomastigotes of <i>Trypanosome cruzi</i> Y-strain	Week activity	[25]
	Antibacterial	Leaves and stems	EO	0.125 to 8 mg/mL	In vitro: agar diffusion, broth microdilution method	Highly active against S. Aureus and E. Coli; no significant activity against non- fermentative Gram-negative bacilli, A. Baumannii, and P. Aeruginosa	[26]
	Antifungal	Leaves	EO	0.1 to 0.5µg /mL	Invitro: disc diffusion technique, determination of MIC studied by semisolid agar antifungal susceptibility method, dermatophytes and keratinophilic fungi including <i>Trichophyton rubrum, T.</i> <i>verrucosum, T. mentagrophytes,</i> <i>Microsporum gypseum</i> and <i>Candida</i> <i>albicans</i> were isolated from infected skin scrapings of <i>Tinea</i> patients	Maximum zone of inhibition was against Trichophyton mentagrophytes Followed by T. Rubrum, Microsporum canis, M. Fulvum, C. Albicans, M. Gypseum And Fusarium verticillioides	[27]
	Hepatoprotective and antioxidant	Whole plant	Ethanolic extract	1000 mg/kg/day	In vivo: paracetamol hepatoxicity- induced Sprague-Dawley rat model	↓Hepatic markers (AST and ALT); ↑GSH and ↓MDA	[28]
	Antidepressant	Leaves	Aqueous extract	10, 25 and 50 mg/kg	In vivo: forced swim test (FST), tail suspension test (TST) and yohimbine-induced lethality test (YLT) in mice	Antidepressant-like activity devoid of significant stimulation of the spontaneous motor activity via involvement of noradrenergic, serotonergic, and monoaminergic systems	[29]
	Topical anti- inflammatory	Leaves	lipid-and EO-free infusion	1mL of final formulation	In vivo: carrageenan-induced rat Paw edema model	Significant reduction of edema volume	[30]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Antimalarial	Whole plant	Plant powder	600 and 3200 mg/Kg	In vivo: mice with a patent Plasmodium chabaudi AS or P. berghei ANKA infection	Suppression of parasitaemia , antimalarial activity against both species; higher antimalarial activity of low dose than high dose against <i>P. Berghei</i> ANKA; As a prophylactic treatment, higher antimalarial activity of whole plant than herbal infusion or chloroquine; higher activity of combination of whole plant and chloroquine than chloroquine alone against <i>P. Berghei</i> ANKA; better temperature regulation by <i>C. Citratus</i> than group treated with CLQ and that treated with the combination of <i>C. Citratus</i> than that treated with the combination of <i>C.</i> <i>Citratus</i> and CLQ	[31]
	Antioxidant, anti- inflammatory and anti- bacterial	Leaves	Ethanolic extracts	0.01-10mg/mL	Invitro: DDPH test and DNA protection test; albumin denaturation, HRBC membrane stabilization, anti- proteinase and heat induced hemolysis; microtitre well dilution method against <i>Staphylococcus aureus</i> and <i>S.</i> <i>pyogenes</i>	Antioxidant and anti inflammatory activity; MIC90 values: 0.557 and 0.330(mg/mL) against <i>S.aureus</i> and <i>S.pyogenes</i> respectively	[32]
	Anxiolytic	ND	EO	Inhalation of three or six drops aroma	Human study-40 male volunteers exposed to an experimental model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT) after inhalation of EO	↓ Anxiety and subjective tension in 5 min	[33]
	Antifungal	ND	ЕО	ND	Invitro: broth macrodilution method, In vivo: topical antifungal activity studied in cyclophosphamide induced immunity suppressed rat, irritation effect: Draize patch test on albino rats	Significant antifungal activity against C. Albicans with MIC and MFC of 2 and 8 µl/mL, respectively; no erythema or edema of hydrogel formulation on the shaved rats' skin. ↓ CFU/mL values by topical formulation after 2 days of treatment	[34]
	Anti-allergic and cytotoxic	Leaves	hexane extract	60, 120 or 180 mg/kg	In vivo: murine model of respiratory allergy to the mite <i>Blomia tropicalis</i> in A/J mice, MTT colorimetric method	↓Bt-specific IgE, IgG1 and IgG2a in the serum of mice sensitized with Bt antigen; ↓leukocytes/eosinophils and eosinophil peroxidase activity in BAL; ↓infiltration of leukocytes in lung tissue; ↓production of mucus in the respiratory tract; ↓IL-4 in BAL and the nuclear expression of NF-κb	[35]
	Gastroprotective	Leaves	EO-free infusion	28 or 56mg/kg of	In vivo: acute gastric lesions induced by ethanol in Wistar rat	In the prevention groups: ↓number and severity of gastric lesions; in the treatment group: ↓ Ulcer index	[36]
	Aldose reductase inhibitory and antioxidant	-	petroleum ether extract	75 μg/mL	In vitro: DPPH and FRAP assays; aldose reductase enzyme inhibitory assay; Invivo: streptozotocin-induced diabetic Wistar rats	Citronellol: 90.4% inhibition of aldose reductase (IC ₅₀ value: 19.6 \pm 0.8 µg/ mL); antioxidant activity; \$sorbitol (44%) in the eye lens study	[37]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Erythropoiesis boosting	Leaves	Infusion	2, 4 and 8 g/day	Human study: clinical trial,105 subjects	↑ Pcv, hb, And RBC no change in MCH, MCV, and MCHC; ↓ WBC and differentials without any changes in neutrophils and lymphocytes	[38]
	Diuretic	Leaves	Infusion	2, 4, and 8 g /day	Human study: pre-experimental and postexperimental design in 105 participants	↓CCR and EGFR at day 30 in in all the groups. At day 10, no change in CCR and EGFR in those treated with infusions whereas ↑diuretic indices (urine volume, urination frequency, diuretic action, and saliuretic indices); ↑Serum and urinary creatinine and Serum urea in all groups; no change in serum electrolytes but ↑urinary electrolytes	[39]
	Antitumor and immunomodulatory	Aerial part	polysaccharide fraction	30,50,100 and 200 mg/kg/d	Invitro: colorimetric MTT assay. In vivo: mice were implanted with cell suspension containing \$180 tumor cells into the right armpit to induce tumors	Inhibition of growth of transplanted \$180 cells with the Inhibition rates ranging from 14.8 to 37.8%; dose-dependent improvement of the immunity of the tumor-bearing mice. With dose of 200 mg/kg/d, ↑thymus and spleen indices; ↑cona- and LSP-induced splenocyte proliferations; ↑IL-2, IL-6, IL-12, and TNF-α	[40]
	Growth inhibitor of oral pathogens	Leaves and twigs	EO	1%, 0.1%, and 0.01%.	In vitro: broth dilution methods	Inhibition of the growth of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Lactobacillus acidophilus	[41]
	Anti-inflammatory and Analgesic	Leaves	Infusion and flavonoid-rich and tannin-rich fractions	34.12 mg /kg, 68.24 mg/kg, 3.71mg/kg, 7.42 mg/kg, 2.98 mg/kg and 5.96 mg/kg	In vivo: carrageenan-induced rat paw edema model; hot plate test; acetic acid-induced writhing test	Edema inhibition, ↓ pain reduction; ↓inflammation and peripheral pain	[42]
	Hepatoprotective	Leaves	aqueous extract	100 mg/kg	In vivo: hydrogene peroxide-liver injury in male rats	↓ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; ↑TP and GSH levels in serum and liver homogenates; improvement of liver histo-pathological changes	[43]
	Anti-inflammatory	Leaves	Methanolic extract	0.625, 1.25, 2.5, and 5 μg/mL	In vitro: incubating PBMCs with the sample and then stimulating by lipopolysaccharide; enzyme-linked immunosorbent assay; standard Trypan blue exclusion method	Inhibition of the release of IL-1 β with IC50 = $3.22 \ \mu g/mL$	[44]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anti-allergic and anti- inflammatory	ND	EO	10,100 μg/mL 500 μg/ear	In vitro: rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore A23187; RAW264.7 murine macrophages treated with lipopolysaccharide. In vivo- immunoglobulin E (IgE)- induced passive cutaneous anaphylactic (PCA) reaction in mice and a 12-O-tetradecanoylphorbol-13- acetate-induced inflammatory mouse ear edema	 >40% inhibition of mast cell degranulation; >50% inhibition of TNF-α production. Inhibition of the release of β-hexosaminidase and TNF-α production and LPS-induced NF- κb nuclear translocation by citral and geranial. Inhibition of PCA reaction in the mice by EO, citral and geranial; suppression of inflammation by pre-treatment with 500 µg/ear of these compounds as follows: geranial > lemongrass > citral 	[45]
	Antifungal	ND	EO	1.25 μL/mL	Human study: phase I (20 volunteers) and II (47 volunteers) clinical studies in patients with pityriasis versicolor for 40 days	No significant adverse events during phase I. In phase II, after 40 days of treatment, the rate of mycological cure was 60% for the group treated with EO and over 80% for the group treated with ketoconazole formulations	[46]
	Protective effect on reproductive system	Leaves	Aqueous extract	100 mg/kg	In vivo: hydrogen peroxide (H2O2)– induced oxidative stress and injury in the reproductive system of male rats	 ↑ Body, testicular, and epididymal weight, testosterone, The values of the various sperm characteristics, and GSH; ↓ MDA in serum and testes homogenates, as well as testicular histopathological alterations in the h2o2-treated rats 	[47]
	Neuroprotective	ND	EO	100 μg/mL	In vitro: glutamate-induced cell damage in a primary culture of rat cerebellar granule neurons; MTT assay	↑Cell viability by treatment with EO before, during, and after exposure to glutamate; ↓ Necrotic rate; antiapoptotic activity in cerebellar granule neurons due to Cell cycle arrest in G0G1 phase	[48]
	Renal protective	ND	Ethanolic extract	200 mg/kg/day	In vivo: gentamicin-induced nephrotoxicity in male rabbits	Protection from alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase, urinary alkaline phosphatase, and histology of kidney induced by gentamicin	[49]
	Antidiabetic	Leaf sheath	EO	400 or 800 mg /kg	In vivo: poloxamer-407 induced type 2 diabetic Wistar rats	 Amelioration of glycaemia, insulinemia and lipid dysmetabolism, accompanied by increased GLP-1 content in cecum; Histopatholgical analysis of pancreas showed increase in β-cell mass, islet number and quality of insulitis; ↓hba1c and TBARS, ↑GSH levels, total thiol, GST,SOD and catalase 	[50]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anticancer	leaves	ЕО	500 mg/kg /week	In vivo: hyperplastic lesions in the mammary gland, colon, and urinary bladder induced by N- methyl-N-nitrosourea (MNU) in female BALB/c mice	 ↓ Target organ cytotoxicity (cell proliferation and apoptosis responses) in colonic crypt and bladder urothelial epithelial cells; ↑apoptosis in mammary epithelial cells ↓ early development of proliferative/preneoplastic lesions; ↓ deleterious effects of mnu exposure detected by the lower cell proliferation index in the urinary bladder and the lower apoptotic index in both the colon and urinary bladder; 	[51]
					↓cell proliferation in the mammary gland, resulting in a protective action against mammary hyperplasia development; modulation of the colonic and urothelial cytotoxicity		
	Vasorelaxant	Leaves, stems, and roots	Methanolic extract	1, 3, 10, 30 and 100 mg/mL	In vitro: spontaneously hypertensive rats and Wistar Kyoto Rat; phenylephrine (PE)- induced contraction	Dose-dependent relaxant effect of citral, LE (leaves extract), and RE (root extract) on the PE-induced contractions; citral, LE, and RE abolished the restoration of PE-induced contraction caused by the addition of increasing doses of calcium in both endothelium intact and denuded rings; citral may partially act through the NO pathway while a vasodilator prostaglandin may mediate the effect of LE	[52]
	Cardioprotective	Aerial parts	Eethanol and water extract	200 mg/kg	In vivo: isoproterenol-induced cardiotoxicity in male Wistar albino rats	Cardioprotective activity by extract pretreatment as evidenced by ↓activity of cardiac markers (CKMB, CK, LDH, GOT and GPT) in serum and ↑ the same in heart homogenate;↓ toxic events of lipid peroxidation (TBARS) in both serum and heart tissue, by increasing the level of enzymatic antioxidants (like SOD, catalase, gpx and GST) and non-enzymatic antioxidants (GSH,vitamin C and vitamin E) significantly in both heart homogenate and serum sample	[53]
	Antifungal	Leaves	EO	2% Shampoo formula	Invitro: broth dilution assay	Anti-malassezia activity with MFC after one week at room temperature = 75 μ g/mL and at $45^{\circ}c = 18.75 \ \mu$ g/mL.	[54]
	Hypotensive and Vasorelaxant	ND	EO	1–20 mg⁄ kg	In vivo: non-anaesthetized Rats	Induction of hypotension associated with tachycardia; in intact rings of rat mesenteric artery pre-contracted with phenylephrine, citronellol induced relaxations that were not affected by endothelium removal; citronellol strongly antagonized contractions induced by cacl2; citronellol inhibited the contractions induced by phenylephrine or caffeine	[55]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anxiolytic	Leaves	EO	5,10,50 mg/kg 500, 1000 and1500 mg/kg	In vivo: light/dark box (LDB) and marble-burying test (MBT); forced swimming test (FST) in mice	Anxiolytic-like activity at the dose of 10 mg/kg in a LDB via the GABA-A receptor benzodiazepine complex; In the FST and MBT, ↑ time spent in the light chamber	[56]
	Spasmolytic	Leaves, Stems, and roots	Methanolic extract	0.001-1 mg/mL	In vitro: isolated rabbit ileum In vivo: Ach-induced interaction and KCL-induced interaction	↓ ACH- and KCL-induced ileal contractions by citral and extract of leaves via acting as calcium antagonists. Furthermore, the relaxant effect of citral, but not that of the leaf extract may be mediated by nitric oxide	[57]
	Effect on locomotor activity	ND	EO	0.1, 0.3, and 0.5 mL	In vivo: wheel cage for mice	↓ Mice locomotor activity by EO, citronellol and citronellal in a dose-dependent manner; citronellal was a dominant compound in the blood plasma of mice after inhalation of EO	[58]
	Anti-tyrosinase and antioxidant	Stems	EO	ND	In vitro - mushroom tyrosinase was examined by means of the dopachrome method using L-dopa as an enzymatic substrate. Antioxidant activity was gauged by the free radical scavenging activity test (or ABTS assay) and ferric reducing/antioxidant power assay	High level of antityrosinase activity 69 ± 4%. antioxidant activity with respect to mechanisms of both free radical scavenging and reducing activities.	[59]
	Acetylcholinesterase and butyrylcholinesterase inhibitor	Aerial parts	EO	Microemulsion containing 10 % EO	In vitro: Ellman's colorimetric method	High activity with IC ₅₀ = 0.34 µl/mL and 2.14 µl/mL against BCHE and ACHE activity, respectively	[60]
	Anticonvulsant	Leaves	EO	50,100,200 mg/kg	In vitro: human neutrophils In vivo: pentylenetetrazol/ pilocarpine / strychnine -induced convulsion and, barbiturate-induced sleeping time on male Swiss mice	More active on the pentylenetetrazol-induced convulsion model; <i>îlatency</i> to the first convulsion and latency to death which were potentiated in the presence of a lower dose of diazepam; blockage of anticonvulsant effects by flumazenil; <i>îbarbiturate-induced</i> sleeping time; blockage of MPO release from human neutrophils	[61]
	Oral thrush healer	ND	Infusion	250 mL twice a day	Human study: a randomized controlled trial in 90 HIV/AIDS patients for11days according to oral thrush scale	Better efficacy and lower number of adverse events than gentian violet	[62]
	Hypoglycemic and hypolipidemic	Leaves	Aqueous extract	125-500 mg/kg	In vivo: normal, male Wistar rats for 42 days	↓Fasting blood sugar and lipid parameters dose dependently; ↑HDL-c; no effect on triglycerides level	[63]
<u> </u>	Antiplatelet	-	EO	1-300 µg/mL	In vitro: guinea pig and rat plasma	Block clot retraction induced by thrombin	[64]
Cymbopogon densiflorus	Antioxidant	Leaves	EO	0.5 to 50 mg/mL	In vitro: DPPH and ABTS methods	DPPH: IC ₅₀ =14.689mg/mL and ABTS:0.567 mg/mL	[65]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Antimicrobial	leaves and inflorescences	EO	250, 500, 1000 ppm	In vitro: macro broth dilution method a gainst Staphylococcus aureus, S. agalactiae, S. pyogenes, Entrococcus faecalis, Bacillus subtilis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, P. fluorescens. Streptococcus pneumoniae, Salmonella typhi, S. paratyphi A, Klebsiella pneumoniae	Activity against most of the tested bacterial strains; Gram-positive bacteria being more sensitive than Gram-negative ones; mics were found to be between 250 and 500 ppm for the Gram-positive and between 500 and 1000 ppm for the Gram-negative bacteria. The growth of <i>P. Mirabilis</i> and <i>E. Faecalis</i> was inhibited at 1000 ppm	[66]
Cymbopogon distans	Antibacterial and antifungal	Leaves	EO	1000-1.95 µg/mL	In vitro: filter paper disc diffusion assay, micro dilution broth assays against Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans and Candida kefyr	Activity against all bacterial strains (MIC: 250–1000 μg/mL) and three fungal strains (MIC: 130–530 μg/mL).	[67]
	Antimicrobial	Leaves	EO	50, 100, 250 and 500 μL/mL	In vitro: disc diffusion method	Significant inhibition for <i>Escherichia coli</i> , no inhibition for <i>Bacillus cereus</i> and <i>B. Subtilis</i> , inhibition zone of 50, 27, 35 mm for <i>Candida</i> <i>albicans</i> , <i>Aspergillus fumigatus</i> , <i>Saccharomyces cerevisiae</i> respectively; total inhibition against <i>Aspergillus niger</i> ; the best MIC values against all bacterial strains with 2.5 µl/mL for all the studied bacteria except 5 µl/ mL for <i>S. Aureus</i>	[68]
Cymbopogon flexuosus	Antioxidant and anticancer	Aerial parts	Ethanolic extract	62.5–750 μg/mL	In vitro: human hepatocellular carcinoma cell lines (HepG-2) and adenocarcinomic human alveolar basal epithelial cell line (A-549)	Antioxidant activity; ↓carcinoma cells growth; inducing apoptotic cell death through stimuli of caspase-3 and caspase-9	[69]
- 10	Hepatoprotective	ND	EO	200-400 mg/kg	In vivo: male Sprague-Dawley rats	EO and citral: ↓ hepatic testosterone 6b- hydroxylation and ethoxyresorufin O- deethylation activities. ↑NADPH:quinone oxidoreductase 1 activity by citral; ↑ UDP glucurosyltransferase activity by EO in the rat liver;↓lipid peroxidation and reactive oxygen species levels in the liver by EO and citral. After acetaminophen treatment, however, EO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver	[70]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anti-inflammatory	ND	EO	0.0012% (v/v)	In vitro: pre-inflamed human dermal fibroblasts	Inhibition of production of the inflammatory biomarkers vascular cell adhesion molecule 1 (VCAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC), and monokine induced by gamma interferon (MIG); ↓ tissue remodeling biomarkers collagen-I and III, epidermal growth factor receptor (EGFR), and plasminogen activator inhibitor (PAI-1); and inhibition of immunomodulatory biomarker macrophage colony-stimulating factor (M-CSF); modulation of global gene expression and robustly impacted signaling pathways	[71]
	Anti-dandruff	ND	EO	5, 10 or 15% of EO	Clinical trial: a randomized, double-blind, placebo-controlled, split-head	↓ Dandruff	[72]
	Lipoxygenase inhibitor, antioxidant, and antimicrobial		ЕО	ND	In vitro: lipoxygenase inhibition assay, DPPH assay and β -carotenebleaching assay. agar dilution, broth dilution, and poisoned food method	Inhibition of lipoxygenase activity by 51% at 12.5 μg/mL, lipoxygenase inhibitory activity was highest in the citronellal (IC ₅₀ value 1.66 μg/mL); DPPH radical scavenging: IC ₅₀ (μg/mL): 660.2;B-carotene bleaching IC50 (μg/mL): 125.50; great antimicrobial activity against <i>Klebsiella pneumonia, Bacillus</i> <i>cereus, B. Subtilis, Staphylococcus</i> <i>epidermidis, S. Aureus, Malassezia furfur</i> and <i>Aspergillus parasiticus</i>	[73]
	Antifungal	Leaves and stems	EO	ND	In vitro: agar well diffusion assay against <i>Trichosporon ovoides</i>	MIC :25 µl/mL MFC :50 µl/mL	[74]
	Analgesic and Anti- inflammatory	Leaves	EO	50, 100, 200 mg/kg	In vivo: acetic acid- induced writhings test, tail flick test, Carrageenan-induced rat paw edema method, chronic. Cotton pellet- induced granuloma in rats	↓ Acetic acid–induced writhing; no effect on tail flick response due to the hot water- induced noxious stimuli; antiphleogestic activity; ↓ weight of granuloma	[75]
Cymbopogon giganteus	Antimicrobial	Leaves	EO	10–0.075 mg/mL	In vitro: disc diffusion and microdilution methods against Escherichia coli, Enterobacter aerogenes, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, S. typhimurium, Shigella dysenteriae, and Staphylococcus aureus	Antimicrobial effects against all microorganisms	[76]
	Anti-inflammatory and analgesic	Leaves	EO	40 -192 µg/mL	In vitro: soybean lipoxygenase L-1 and cyclooxygenase	The best inhibition on lipoxygenase L-1 at t1/2 value of 15 min with 77 µg/mL at 30 °C but it had no effect on cyclooxygenase	[77]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
Cymbopogon goeringii	Antioxidant and for skincare	Leaves	EO	ND	Invitro: superoxide anion radical scavenging assay, ABTS cation radical scavenging assay, lipid peroxidation assay, Nano-TiO2– NO2–UV induced protein oxidation and tyrosine nitration scavenging assay	IC ₅₀ =150 μg/mL for O2 and 500 μg/mL for ABTS; appreciable inhibitory lipid peroxidation activity; protection of bovine serum albumin against UV–tio2–NO2- induced protein oxidation and tyrosine nitration injury	[78]
	Anti-hyperlipidemic					↓ In body weight.	
	and anti-	Aerial parts	Ethanolic extract	150, 300 and 500 mg/kg	In vivo: high-fat high-sugar diet model in Sprague-Dawley male rats	\downarrow in total cholesterol, triglycerides, LDL and	[79]
	hyperglycemic					blood glucose, ↓ atherogenic index	
	Antimicrobial	Aerial parts	EO	16-0.0125 μl/mL	In vitro: disc-diffusion and microbroth dilution assays; DPPH assay	Best antimicrobial activity against Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumonia; inhibitory effect against Bacillus subtilis and Candida albicans	[80]
Cymbopogon jwarancusa	Cytotoxic and antioxidant	Aerial parts	EO	5, 10, 30, 50 and 100μg/mL 20, 40, 60, 80 and 100 μg/mL	In vitro: cytotoxicity on human cancer cell lines THP-1 (leukemia), A-549 (lung), HEP-2 (liver) and IGR-OV-1 (ovary) by Sulphorhodamine-B assay; DPPH assay	IC ₅₀ of 6.5 μ g/mL (THP-1), 6.3 μ g/mL (A-549), 7.2 μ g/mL (HEP-2) and 34.4 μ g/mL (IGR-OV-1); potent antioxidant activity	[81]
jirarancasa .	Antioxidant and antimicrobial	Leaves	Ethanol and aqueous extract	0.25 0.50 1.00 2.00 mg/10 mL 100,200,500ppm	In vitro: DPPH and FRAP assay, β - carotene linoleate bleaching (βCL) assay, food poison Technique against Aspergillus flavus, Fusarium oxyporum, Staphylococcus aureus, Streptococcus salivarius	Ethanol extract showed highest antioxidant activity in DPPH (31.99 % inhibition) and FRAP (38.79 Fe (II) micromole per litre) assay while water extract showed highest antioxidant activity in βcl (54. %) at 1mg/10ml concentration; ethanol extract was very effective against <i>Fusarium oxyporium</i> and <i>Staphylococcus aureus</i> at 500 ppm while water extract was found less effective against <i>Aspergillus flavus</i> at 100 ppm concentration	[82]
	Anti malarial	Aerial parts	EO	ND	In vitro: in each 400 mL beaker 25 of 4 th instar larvae of Anopheles were exposed tothese concentrations at different replicates	Activity against larvae of Anophel stephensi	[83]
Cymbopogon	Antimicrobial	Aerial parts	EO	0.1%	In vitro: <i>Borrelia burgdorferi</i> culture went into stationary phase (~10 ⁷ spirochetes/mL), followed by evaluating potential anti-persister activity of EOs in a 96-well plate	Residual viability (%) after 0.1% EO treatment = 35 ± 5	[84]
martini	Antibacterial		EO	1, 5 and 10µg/mL	In vitro: Resazurin broth microdilution assays; RNA-binding assay against <i>Cutibacterium acnes</i>	MIC was 0.7 to 1.6 mg/mL for the three main <i>C. Acnes</i> types. There were no cytotoxic effects of compounds in the absence or presence of <i>C. Acnes</i>	[85]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Topical antimicrobial	Aerial parts	EO	0.65 to 10 µg/mL	In vitro: agar well diffusion and agar dilution assay against Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogen, Aspergillus niger Candida albicans, Microsporum canis, Trichophyton mentagrophytes, Trichophyton rubrum, and T. verrucosum; skin sensitizations of the formulations were evaluated using guinea pig maximization	Broad-spectrum antimicrobial potency against all tested organisms with MIC value ranging from 0.65 to 10 μ g/mL ,Antifungal against T. Mentagrophytes and <i>T. Rubrum</i> at concentrations above 1% of oil and against <i>M.</i> <i>Canis</i> and <i>T. Verrucosum</i> at concentration of 4% oil. Hydrophilic and macrogol blend ointment containing 5% oil did not produce any skin sensitization on guinea pigs	[86]
	Estrogenic	ND	EO	ND	In vitro: hormone-dependent (MCF- 7) and -independent (MDA-MB-231) breast cancer cell lines using the sulforhodamine-B assay	Stimulating ER+ cell growth and ERE- luciferase reporter activity to levels seen with premenopausal estradiol concentrations	[87]
	Antifungal	ND	EO	2 µl/mL to 3 µl/mL	Invitro: disc diffusion technique and semisolid agar method against Trichophyton rubrum, T. mentagrophytes, T. tonsurans, Microsporum canis, M. fulvum, Candida albicans	Maximum activity against <i>T. Mentagrophytes</i> followed by <i>M. Fulvum</i> and <i>T. Rubrum;</i> Minimum inhibitory concentration was ranged from 2 µl/mL to 3 µl/mL against tested fungi	[88]
	Hepatoprotective	ND	EO	13.73mg EO/L of air for 10 minutes every 48 hours	In vivo: Wistar rats	No effect on glycemia and triacylglycerol levels; ↓ Cholesterol by geraniol and EO; no effect on serum protein, urea, aspartate aminotransferase activity, and total hepatic protein; ↑Creatinine and alanine aminotransferase by geraniol but ↓ by EO. Alanine aminotransferase activity and lipid hydroperoxide were higher in geraniol than EO. Catalase and superoxide dismutase activities were higher in EO than geraniol. ↑glutathione peroxidase by EO and geraniol	[89]
	Bronchodilator, vasodilator and spasmolytic	Leaves	Methanolic extract	ND	In vitro: isolated rabbit jejunum preparations; isolated rabbit tracheal preparations; isolated rabbit aorta preparation	Methanolic extract: relaxation of on jejunum through ↓ magnitude and frequency of spontaneous contractions; relaxant effect on high K ⁺ -induced contractions in isolated rabbit jejunum preparations; dichloromethane and aqueous fractions: concentration- dependent relaxation in spontaneous and K ⁺ - induced contraction of jejunim; relaxant effect on tracheal preparation which is mediated through antimuscarinic and/or Ca2 ⁺ channel blocking activities; relaxant effect of extract against phenylephrine- and K-induced aorta contractions	[90]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Neuroprotective		EO	50 mg/kg and 100 mg/kg	In vivo: global ischemic brain damage induced by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by 60 min reperfusion on Wistar albino rats	Treatment prior to occlusion markedly reversed biochemical/enzymatic alterations including ↑ LPO and ↓SOD, CAT, total thiols and GSH and restored to normal levels; protection of histology of brain against ischemic damage	[91]
	A-Glucosidase inhibitor	Whole plant	Aqueous extract	5.0 mg/kg	In vitro: α-glucosidase from Yeast and α-amylase from Aspergillus oryzae and α-glucosidase isolated from rats In vivo: streptozotocin-induced diabetic rats	Toluene: ethyl acetate fraction showed optimum Alpha Glucosidase inhibitory activity. The silica gel chromatography fraction demonstrated 98, 98, and 68% inhibition for starch, maltose, and sucrose, respectively; Intestinal absorption studies using non-everted intestinal sacs, as well as in vivo studies in streptozotocin-induced diabetic rats using oral glucose tolerance with maltose and sucrose load, revealed better inhibition of alpha glucosidase as compared to acarbose;	[92]
	Antigenotoxic and antioxidant	ND	EO	50, 100 and 200 µg/mL	In vitro: the antigenotoxic effect on human lymphocyte cells using trypan blue dye exclusion test, plasmid pBR322 DNA strand scission, and comet assay. Antioxidant activity by DPPH+ free radical scavenging and lipid peroxidation assay	Antigenotoxic activity against methyl methanesulphonate (MMS) and hydrogen peroxide; dose dependent antioxidant activity	[93]
	Monoamine oxidase (MAO) inhibitor and antioxidant	Leaves	Ethanol extract	100–500 lg/ mL	In vitro: rat brain mitochondrial MAO; DPPH	Inhibition of MAO activity with competitive mode of inhibition; significant radical scavenging ($IC_{50} = 0.34$ mg/mL) and reducing activity ($IC50 = 0.70$ mg/mL)	[94]
	Antibacterial		EO	0.5 mg/mL	In vitro	Reduction of the biofilm biomass of Staphylococcus aureus up to 100%	[95]
Cymbopogon nardus	Insect repellent	Whole plant	n-hexane extract	31.25-1000 ppm	In vitro: oviposition deterrent and adult emergence inhibition activities against <i>Culex quinquefasciatus</i> mosquito	During the oviposition deterrent activity, the 1000 ppm concentration of extract showed maximum (71.9%) effective repellence (ER). The lowest concentration (31.25 ppm) caused 13.43 % ER. During the adult emergence inhibition (EI) activity, it restricted adult emergence (EI ₅₀ = 515.2 ppm)	[96]
	Antioxidant and antibacterial	Leaves	EO	100- 2000 μg/mL	In vitro: DPPH assay, microdilution method against Staphylococcus aureus, Bacillus subtilis, B. cereus, Pseudomonas aeruginosa and Escherichia coli	Antioxidant activity with EC ₅₀ = 2.44 μg/mL; antibacterial activity against the tested Gram positive and Gram-negative bacteria. The minimum inhibitory concentration of the EO ranged from 250 μg/mL to 1000 μg/mL	[97]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Anti-candidiasis, anti- inflammatory and Wound healer	Leaves	EO	25 mg/day	In vivo: streptozotocin-induced diabetic Swiss albino mice with full thickness excisional wound infected by <i>C. albicans</i> inoculums. Invitro: agar well diffusion method inoculated with <i>C. albicans</i> , <i>C.glabrata</i> and <i>C.</i> <i>tropicalis</i>	Inhibition of the growth of all the <i>Candida</i> species tested; eradication of <i>C. Albicans</i> colonization on diabetic wounds; ↓levels of inflammatory cytokines like TNF-α and IL-1β healing the wounds confirmed by observation of fibro collagenase sub epidermal tissue with normal skin adnexal structures like hair follicles and sweat glands with mild cell	[98]
	Anti- inflammatory	ND	EO	15 μg/mL	In vitro: cytotoxicity using MTT assay and Effects on IL-1β-Induced proinflammatory mediators by human gingival fibroblasts	IC ₅₀ = 50 μg/mL; no effect on baseline secretion of IL-6, IL-8, and PGE2 but ↓in IL- 1β-induced IL-6; ↓IL-1β-induced IL-8 secretion; synergistic effects with IL-1β on the secretion of PGE2	[99]
	Antifungal	Leaves	EO	10-1000 μg/mL	In vitro: microplate dilution technique against 20 samples of <i>Candida</i> spp.; cytotoxicity against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines	Antifungal activity against all strains tested with MIC values ranging from 250 to 1000 μ g/mL, except for two clinical isolates of C. Tropicalis (MIC > 1000 μ g/mL; inhibition of the growth of the yeast and hyphal formation of <i>C. Albicans</i> strains at concentrations ranging from 15.8 to 1000 μ g/mL; inhibition of mature biofilms of strains of <i>C. Albicans</i> , <i>C. Krusei</i> and <i>C. Parapsilosis</i> ; IC50=96.6 μ g/mL for heg-2 and 33.1 μ g/mL for MRC5	[100]
	Anti-inflammatory	Leaves and flowers	EO	1 mL of 2% EO	In vivo: egg albumin-induced paw edema	Significant anti-inflammatory effects from the first 30 min after albumin injection compared to aspirin which had a later onset of effect	[101]
	Weight lowering	Leaves	EO	Inhalation of EO diluted 100× in water	In vivo: high fat diet fed male adult Sprague-Dawley rats	↓ Feed consumption; ↓percentage of weight gain; ↓the blood cholesterol level	[102]
Cymbopogon nervatus.	Spasmolytic	Stems and inflorescences	EO	30, 60 and 90 μg/mL 10–200 μg/mL	Invitro: DPPH assay, effect against spontaneous contractions, and contractions induced by ACh and KCl,	Strong, significant and concentration- dependent spasmolytic activity at concentration of 200 µg/mL, the oil showed 88.44% of maximal spasmolytic effect of atropine against spontaneous contraction; inhibition of ach-induced contractions at 90 µg/ml and ↓ effect of the highest applied concentration of ach to 37.29%. Strong activity against contractions induced with KCL (80 mm) and in concentration of 200 µg/mL, completely abolished the contractile effect of kcl. Moderate anti-DPPH activity	[103]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Antibacterial	Inflorescence	EO	200 µl/well	Invitro: well diffusion method against Staphylococcus aureus; Bacillus subtilis;Escherichia coli;Pseudomonas aeruginosa; Salmonella typhi; S. paratyphi A; S. paratyphi B;Shigella dysentriae; Sh. Flexeneri; Sh. Boydii;Proteus mirabilis; Klebsiella pneumoniae	Inhibition of the growth of all tested clinical isolate bacteria with the exception of Salmonella typhi	[104]
Cymbopogon pospischilii	Antimicrobial and anticancer	Leaves	EO	5,25,75,125,250,500,1000 μg/mL	In vitro: micro-well dilution method against Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, and four Gram-negative bacteria: Escherichia coli, Klebsiella pneumonia, Salmonella typhimurium and Pseudomonas aeruginosa; Cell Titer-Blue cell assay on human Chang liver cells	Active against the growth of Gram positive than the Gram negative bacterial tested. LD_{50} = 81.66 of toxicity at 24 h	[105]
	Anti-nephrotoxic, anti-inflammatory and antioxidant	Leaves	Aqueous extract	2, 1, 0.5, 0.25, 0.125 mg/mL	In vitro: CCL4-induced toxicity in African green monkey; renal epithelial cells (Vero, American Type Culture Collection "ATCC", CCL- 81)	Suppression of CCL4-induced oxidative stress by scavenging the reactive oxygen species, ↑ cellular antioxidant indices, ↓ccl4-induced inflammation by inhibiting the gene expression of NF-κb, NOs, and the level of nitric oxide, improvement of the morphological appearance of Vero cells, cellular necrosis, and the gene expression of kidney injury molecule-1	[106]
Cymbopogon schoenanthus	Antioxidant, antimicrobial and insecticidal	Aerial parts	EO	10, 20,40 and 80 μl/mL 33.3 μl/mL	In vitro: DPPH assay, disc diffusion method against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Candida albicans; Female fecundity and eggs hatchability against cowpea weevil (Callosobrochus maculatus)	Antimicrobial against all strains except <i>E.</i> <i>Coli</i> ; weak antioxidant activity; the piperitone-rich EO showed the highest effectiveness against the cowpea weevil with the potent reduction of the female's fecundity and the hatchability of laid eggs	[107]
	Immunomodulatory	Leaves	hydroalcoholic extract	100 mg/kg	In vivo: cadmium- induced toxicity in Swiss albino mice	Pretreatment with extract: ↑hemoglobin, RBC and hematocrit and ↓WBC, bilirubin, AST, ALT, ALP and gamma- glutamyl transpeptidase (GGTP)	[108]
	Free radical scavenger, α- glucosidase inhibitor and lipase inhibitor	Whole plant	ethanol and water extracts	ND	In vitro: DPPH assay, α-glucosidase inhibitory and pancreatic lipase inhibitory assays using 96-well microplate. cytotoxicity and genotoxicity on HeLa cell line using HCS DNA damage Assay	$SC_{50}(\mu g/mL)$ for DPPH radical scavenging activity for ethanol extract: 201.88 and for water extract: 333.99; IC ₅₀ ($\mu g/mL$) for α - glucosidase inhibition for water extract: 282.37 and ethanolic extract showed no inhibition; IC ₅₀ ($\mu g/mL$) for pancereatic lipase inhibition for ethanolic extract: 16.69 and for water extract: 18.43	[109]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Spasmolytic	Stems and inflorescence	EO	10-130 μg/mL	In vitro: effect of oil against spontaneous contractions, contractions induced by acetylcholine and contractions induced by potassium chloride on mesenteries of Wistar rats	Strong, significant and dose-dependent spasmolytic activity	[110]
	Anti- hypopigmentation	Leaves	Ethanolic extract	ND	In vitro: B16 murine melanoma cells and human epidermal melanocytes (HEM); MTT assay; melanin Assay	↑Melanin content of the cells by upregulating the expression of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) at the protein and mrna levels, comparable to the effect of α-melanocytestimulating hormone (MSH), in both B16 cells and HEM. Modulation of at least 44 pigmentation-associated genes including the microphthalmia-associated transcription factor (Mitf) and its transcriptional regulators	[111]
	Antibacterial	ND	EO	1-150 µg/mL	In vitro: agar well diffusion and dilution methods	Effective against Escherichia coli, Staphylococcus Aureus and Klebsiella pneumoniae. Not effective against Staphylococcus saprophyticus at the highest concentration	[112]
	Antiproliferative, antioxidant and antibacterial	leafy stems	EO	0.5- 400.0 μg/mL 200 μg/mL 1 μg/mL	In vitro: anti-proliferative against human cell lines (MCF7 and MDA- MB231, HT29 and HCT116) by MTT assay. Antioxidant activity by DPPH assay. Antibacterial activity by microdilution method	Anti-proliferative activity against HCT116 cell line with IC ₅₀ =19.1 µg/mL; Good antibacterial activity against <i>Escherichia coli, Bacillus subtilis</i> and <i>Staphylococcus aureus</i> with MIC value ranged from 16 to 250 µg/mL; no radical scavenging activity	[113]
	Antihypertensive	Aerial parts	methanolic extract	50,100 mg/kg	In vivo: Νω-Nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats	Dose-dependent decrease in the blood pressure of hypertensive rats,no appreciable Hypotensive effect on normotensive animals in the tested dose levels, Methanolic extract and n-hexane fraction caused a transient decrease in blood pressure of about 8% at 100 mg/kg dose after 2 weeks of treatment	[114]
	Anti-stress	Leaves	Ethanolic extract	100,200mg/kg	In vitro: H2O2-induced cytotoxicity and stress in human neuroblastoma SH-SY5Ycells, HSP47 Assay Invivo – tail suspension test and forced swimming test in ICR Mice	Pretreatment of SH-SY5Y cells with Extract at 1/2000, 1/1000, and 1/500 v/v dilutions significantly inversed H2O2-induced neurotoxicity; significantly reversed heat shock protein expression in heat-stressed HSP47-transformed cells and mRNA expression of HSP27 and HSP90 in H2O2- treated SH-SY5Y; ↓immobility time In forced swimming and tail suspension tests; significant regulation of blood serum corticosterone and cerebral cortex levels of catecholamine (dopamine, adrenaline, and noradrenaline)	[115]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Bronchodilator, anti- inflammatory	ND	EO	0.3 ml/kg	In vivo: cardiac parasympathetic ganglia in rats, the intra-tracheal pressure in guinea-pigs and on carrageenan-induced inflammation in the rats paw	The percentage protective effect of the oil on the vagus-induced bradycardia in rats was 90.1 %; antagonize; the actions of 5-HT and histamine by 80 and 93 %, respectively. Pre- treatment in doses of 0.1 and 0.3 ml/kg (i.p.) 1 h before injection of carrageenan reduced the induced edema	[116]
	Insecticidal	Leafy stems	EO	ND	Invitro: Anopheles gambiae	95% Knock down in mosquito's population	[117]
	Anthelmintic	ND	EO	0.018-22.75 mg/mL 18.2-136.5 mg/mL	In vitro: efficacy against developmental stages of trichostrongylids from sheep naturally infected (95% Haemonchus contortus and 5% Trichostrogylus spp.) through the egg hatch assay (EHA), larval development assay (LDA), larval feeding inhibition assay (LFIA), and the larval exsheathment assay (LEA)	The best activity against ovine trichostrongylids. LC ₅₀ =0.045 mg/mL in EHA 0.063 mg/Ml in LDA, 0.009 mg/ml in LFIA, and 24.66 mg/ml in LEA	[118]
	Hypoglycemic	ND	Aqueous extract	1.5 mL/kg	In vivo: alloxan-induced diabetic rats	Restored the elevated blood glucose level to the normal level. ↓ hepatic activity of cytochrome p450, NADPH-cytochrome c reductase, AHH, NDMA-DI, GST and GSH. ↓ activity of cytochrome p450 system	[119]
	Antimicrobial	Leaves	EO	50,100,250,500 μL/mL	In vitro: disc diffusion method	Good inhibition for <i>E. coli</i> followed by <i>B.</i> cereus and <i>B. subtilis</i> ; also effective against Staphylococcus aureus, Salmonella typhimurium, Aspergillus niger Aspergillus fumigatus Saccharomyces cerevisiae and Candida albicans	[68]
	Antifungal	ND	EO	19.5- 40000µg / mL	In vitro: microdilution method	Great antifungal activity against <i>Candida</i> <i>albicans</i> (MIC:625 μg/mL), <i>C. Tropicalis</i> (MIC1.25 μg/mL), and <i>C. Krusei</i> (MIC:2.5 μg/mL)	[120]
Cymbopogon winterianus	Antinociceptive	Leaves	EO	50–200mg/kg	In vivo: Formalin-, capsaicin-, and glutamate-induced orofacial nociception	↓Orofacial nociceptive behavior; ↓Fos- positive cells was in the dorsal raphe nucleus, locus coeruleus, trigeminal nucleus, and trigeminal thalamic tract; no change in motor coordination in the rota-rod test	[121]
	Antinociceptive	Leaves	EO	25, 50 and 100 mg/kg	In vivo: spontaneous locomotor activity assessed in a cage activity; motor coordination test (rota-rod test); pentobarbital-induced hypnosis, acetic acid-induced writhing; capsaicin-induced nociception	Inhibitory effect on the locomotor activity of mice; antinociceptive effect by increasing the reaction time in the writhing and capsaicin tests; ↑ sleeping time of animals but not modified latency; no alteration in the remaining time of animals on the rota-rod apparatus	[122]

Plant	Pharmacological activity	Plant part	Plant extract	Evaluated dose/ concentration	Method	Result	Ref.
	Cardioprotective	Leaves	EO	1–20 mg/kg 0.1–3000 mg/mL	Invitro: K ⁺ -induced tonus in isolated rat superior mesenteric artery rings In vivo: nonanaesthetized and anaesthetized rats	Induction of dose-dependent hypotension and tachycardia in rats which were partially reduced after atropine administration; induction of bradycardia-associated sinoatrial blockade, junctional rhythm, and first-degree atrioventricular block, which was abolished after atropine administration or vagotomy; induction of relaxation of phenylephrine tonus in arterial rings that was not affected by removal of the endothelium; antagonization of cacl2-induced contractions in depolarizing solution (kcl)	[123]
	Antibacterial	ND	EO	$0100 \ \mu L/mL$	In vitro: broth microdilution method, pour plate method against Propionibacterium acne	MBC= 0.625mL/mL	[124]
	Antinociceptive, anti- inflammatory and antioxidant	Leaves	EO	50, 100, and 200 mg/kg	In vitro: DPPH assay In vivo: Acetic acid-induced writhing, formalin test, hot-plate test, carrageenan-induced neutrophil migration to the peritoneal cavity	↓ number of writhings and paw licking times in the first and second phases, respectively in the acetic acid-induced writhing and formalin tests; no alteration in the latency time for mice licking the rear paws in hot-plate test; inhibition of carrageenan-induced neutrophil migration to the peritoneal cavity in a dose- dependent manner; High scavenging activity toward DPPH radicals with an IC ₅₀ = 12.66 µg/mL	[125]
	Anticonvulsant	Leaves	ЕО	100, 200 and 400 mg/kg	In vivo: pentylenetetrazol (PTZ), picrotoxin (PIC)-induced convulsion in mice; strychnine (STR)-induced convulsion	Depressant activity on CNS. ↓ number of animals exhibited PTZ- and PIC-induced seizures in 50% of the experimental animals. ↑ latencies of clonic seizures induced by STR	[126]
	Insecticidal	ND	EO	ND	In vitro: <i>Aedes aegypti</i> larvicidal bioassay	LC_{10}, LC_{50} and LC_{90} index of A. <i>Aegypti</i> larvae exposed to plant: 56 (48, 62), 98 (89, 107), 172 (151, 206) respectively	[127]

ACT: Acetylcholine; AChE: acetylcholinesterase; ALT: Alanine transaminase; AST: Aspartate transaminase; Beta-CL: beta carotene linoleate bleaching; BCCA: bilateral common carotid artery; BChE: butyrylcholinesterase; CAT: catalase; CCr: creatinine clearance rate; CLQ: chloroquine; CRP: C reactive protein; DCT: dopachrome tautomerase; DENV-2:Dengue virus; EC50: Half maximal effective concentration; EGFR: epidermal growth factor receptor; eGFR: estimated glomerular filtration rate; EHA: egg hatch assay; EMSA: electrophoretic mobility shift assay; EO: essential oil; FST: forced swim test; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FRAP: ferric reducing antioxidant power; GGTP: gamma-glutamyl transpeptidase; GSH: glutathione; Hb: hemoglobin; HbA1c:Hemoglibin A1c; HDL: high density lipoprotein; HIV: human immunodeficiency virus; HMG-coA : 3-hydroxy-3-methylglutaryl-CoA; HSV: Herpes simplex virus; IC50 half maximal inhibitory concentration; IE50: 50% emergence inhibition; IgE: Immunoglobulin E; IgG: Immunoglobulin G; IL: interleukin; I-TAC: interferon-inducible T-cell alpha chemoattractant; LD50: Median lethal dose; LDA: larval development assay; LDB test: light/dark box test; LDH: lactate dehydrogenase; LDL: low density lipoprotein; MAC: Moensity lipoprotein; MBT: marble-burying test; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular hemoglobin; MCF: macrophage colony-stimulating factor; MCV: Mean corpuscular volume; MDA: malonialehyde; MFC: minimum fungicidal concentration; MIG: monokie induced by gamma interferon; MITF: microphthalmia-associated transcription factor; MMS: against methyl methane sulphonate; MTT :3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl terazolium bromide; NADPH: Nicotinamide adenine dinucleotide phosphate; NBT: nitroblueterazolium; ND: not determined; Nf kappa: nuclear factor kappa; NO pathway: nitric oxide pathway; ORT: objection recognition test; PAI: plasminoge

Stroop Color-Word Test; SEM: scanning electron microscope; SOD: superoxide dismutase; SREBP1C: sterol regulatory element binding protein-1c; STR: strychnine; TBRS: Thiobarbituric Acid Reactive Substances; TNF: tumor necrosis factor; TP: total protein; TST: tail suspension test; TRP: tyrosinase-related protein; VCAM: vascular cell adhesion molecule; WBC: white blood cell; WST: water-soluble tetrazolium; YLT: yohimbine-induced lethality test; YMT: Y-maze test; \uparrow : increase; \downarrow decrease

References

- [1] Grice ID, Rogers KL, Griffiths LR. Isolation of bioactive compounds that relate to the anti-platelet activity of *Cymbopogon ambiguus*. *Evid Based Complement Altern Med*. 2011; Article ID 467134.
- [2] El Hadi Mohamed RA, Nagmouchi S, Ahmed Al-Keridis L, Benammar R. Evidence based efficacy of selected herbal extracts against culex quinquefasciatus (Say) larvae. *Pak J Biol Sci.* 2019; 22(3): 127–132.
- [3] Basera P, Lavania M, Agnihotri A, Lal B. Analytical investigation of *Cymbopogon citratus* and exploiting the potential of developed silver nanoparticle against the dominating species of pathogenic bacteria. *Front Microbiol.* 2019; 10: 1–13.
- [4] Rosmalena R, Elya B, Dewi BE, Fithriyah F, Desti H, Angelina M, Hanafi M, Lotulung PD, Prasasty VD, Seto D. The antiviral effect of Indonesian medicinal plant extracts against dengue virus in vitro and in silico. *Pathogens*. 2019; 8(2): 1–11.
- [5] Brugger BP, Martinez LC, Plata-Rueda A, Castro BMCE, Soares MA, Wilcken CF, Carvalho AG. Bioactivity of the *Cymbopogon citratus* (Poaceae) essential oil and its terpenoid constituents on the predatory bug, *Podisus nigrispinus* (Heteroptera: Pentatomidae). *Sci Rep.* 2019; 9(8358): 1–8.
- [6] Bayala B, Bassole IHN, Maqdasy S, Baron S, Simpore J. *Cymbopogon citratus* and *Cymbopogon giganteus* essential oils have cytotoxic effects on tumor cell cultures. identification of citral as a new putative anti-proliferative molecule. *Biochimie*. 2018; 153: 162-170.
- [7] Somparn N, Saenthaweeuk S, Naowaboot J, Thaeomor A, Kukongviriyapan V. Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats. *Acta Pharm.* 2018; 68(2): 185–197.
- [8] Mota APP, Dantas JCP, Frota CC. Antimicrobial activity of essential oils from *Lippia alba*, *Lippia sidoides*, *Cymbopogon citrates*, *Plectranthus amboinicus*, and *Cinnamomum zeylanicum* against mycobacterium tuberculosis. *Ciencia Rural*. 2018; 48(6): 1–9.
- [9] Muhammad Abbas B, Muhammad Tayyab A, Musharraf Abbas B, Fatima T. Evaluation of antibacterial and antifungal activities of *Cymbopogon citratus & Psidium guajava* from Sialkot origin. *Pharmacologyonline*. 2018; 1: 155–163.
- [10] Rita I, Pereira C, Barros L. Exploring reserve lots of *Cymbopogon citratus*, *Aloysia citrodora* and *Thymus* × *citriodorus* as improved sources of phenolic compounds. *Food Chem*. 2018; 257: 83–89.
- [11] Venzon L, Mariano LNB, Somensi LB, Boeing T, de Souza P, Wagner TM, Andrade SFD. Essential oil of *Cymbopogon citratus* (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. *Biomed Pharmacother*. 2018; 98: 118–124.
- [12] Khosravi AR, Sharifzadeh A, Nikaein D, Almaie Z, Gandomi Nasrabadi H. Chemical composition, antioxidant activity and antifungal effects of five Iranian essential oils against *Candida* strains isolated from urine samples. *J Mycol Med.* 2018; 28(2): 355–360.
- [13] Umukoro S, Adeola AH, Ben-Azu B, Ajayi AM. Lemon grass tea enhanced memory function and attenuated scopolamine-induced amnesia in mice via inhibition of oxidative stress and acetyl-cholinesterase activity. *J Herbs Spices Med Plants*. 2018; 24(4): 407–420.
- [14] Hacke ACM, Marques JA, Vellosa JCR, Boligon AA, Da Silva FD, De Souza D, Bonini JS, Rocha JBT, Pereira RP. Ethyl acetate fraction of: *Cymbopogon citratus* as a potential source of antioxidant compounds. *New J Chem.* 2018; 42(5): 3642–3652.
- [15] Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman H, Wahab HA. Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., *Cymbopogon citratus* (DC. Ex Nees) Stapf., and *tabernaemontana coronaria* (L.) willd. and their effects on the growth kinetics and cellular integrity of *mycobacterium tuberculosis* H37Rv. *BMC Complement Altern Med.* 2018; 18(1): 1–15.
- [16] Almeida KB, Araujo JL, Cavalcanti JF, Romanos MTV, Mourão SC. In vitro release and anti-herpetic activity of *Cymbopogon citratus* volatile oil-loaded nanogel. *Rev Bras Farmacogn*. 2018; 28(4): 495–502.
- [17] Méabed EMH, Abou-Sreea AIB, Roby MHH. Chemical analysis and giardicidal effectiveness of the aqueous extract of *Cymbopogon citratus* Stapf. *Parasitol Res.* 2018; 117(6): 1745–1755.
- [18] Ralambondrainy M, Belarbi E, Viranaicken W, Baranauskiene R, Venskutonis PR, Desprès P, Roques P, Kalamouni CE, Sélambarom J. In vitro comparison of three common essential oils mosquito repellents as inhibitors of the ross river virus. *PLoS One*. 2018; 13(5): 1–14.

- [19] Mediesse FK, Mediesse FK, Boudjeko T, Hasitha A, Gangadhar M. Inhibition of lipopolysaccharide (LPS)-induced neuroinflammatory response by polysaccharide fractions of *Khaya grandifoliola* (C.D.C.) stem bark, *Cryptolepis sanguinolenta* (Lindl.) schltr and *Cymbopogon citratus* Stapf leaves in raw 264.7 macrophages and U87 glioblastoma cells. *BMC Complement Altern Med.* 2018; 18(1): 1–10.
- [20] Feriotto G, Marchetti N, Costa V, Beninati S. Chemical composition of essential oils from *Thymus vulgaris*, *Cymbopogon citratus*, and *Rosmarinus officinalis*, and their effects on the HIV-1 tat protein function. *Chem Biodivers*. 2018; 15(2): 1–24.
- [21] Adedos OT, Adeleke GE, Badmus JA, Ojeleye IA, Fatoberu AH. Anti-inflammatory and anti-oxidative effects of flavonoids-rich extract of *Cymbopogon citratus* in sodium nitrite (NaNO2) induced oxidative stress in wistar rats. *Annu Res Rev Biol.* 2017; 12(6) :1–11.
- [22] Philion C, Ma D, Ruvinov I, Mansour F, Pignanelli C, Noel M, Saleem A, Arnason J, Rodrigues M. *Cymbopogon citratus* and *Camellia sinensis* extracts selectively induce apoptosis in cancer cells and reduce growth of lymphoma xenografts in vivo. *Oncotarget*. 2017; 8(67): 110756–110773.
- [23] Sanchez GC, Dizon MD, Soriano HM. Anticlastogenic effects of organically grown moringa (*Moringa oleifera*), lemongrass (*Cymbopogon citratus*), and sweet sorghum (*Sorghum bicolor*) using micronucleus test. *Acta Horticulturae*. 2017: 249–256.
- [24] Jamuna S, Sadullah S, Ashokkumar R, Shanmuganathan G, Mozhi SS. Potential antioxidant and cytoprotective effects of essential oil extracted from *Cymbopogon citratus* on OxLDL and H2O2 LDL induced human peripheral blood mononuclear cells (PBMC). *Food Sci Hum Wellness*. 2017; 6(2): 60–69.
- [25] Junior GZ, Massago M, Teston APM, Morey AT, Toledo MJO. Efficacy of some essential oils in mice infected with *Trypanosoma cruzi*. *Trop J Pharm Res*. 2017; 16(6): 1307–1316.
- [26] Intorasoot A, Chornchoem P, Sookkh S, Intorasoot S. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant *Acinetobacter baumannii*. *J Intercult Ethnopharmacol*. 2017; 6(2): 218–222.
- [27] Jain N, Sharma M. Phytochemical screening and antidermatophytic activity of cymbopogon citratus leaves essential oil and their fractions. *J Essent Oil Bear Plants*. 2017; 20(4): 1107–1116.
- [28] Saenthaweesuk S, Saenthaweesuk S, Naowaboot J, Thaeomor A. Hepatoprotective and antioxidant effects of *Cymbopogon citratus* Stapf (lemongrass) extract in paracetamol-induced hepatotoxicity in rats. *Trop J Pharm Res.* 2017; 16(1): 101–107.
- [29] Umukoro S, Ogboh SI, Omorogbe O, Adekeye ALA, Olatunde MO. Evidence for the involvement of monoaminergic pathways in the antidepressant-like activity of cymbopogon citratus in mice. *Drug Res.* 2017; 67(7): 419–424.
- [30] Costa G, Ferreira JP, Vitorino C, Pina ME, Sousa JJ, Figueiredo IV. Polyphenols from *Cymbopogon citratus* leaves as topical anti-inflammatory agents. J *Ethnopharmacol.* 2016; 178: 222–228.
- [31] Chukwuocha UM, Fernández-Rivera O, Legorreta-Herrera M. Exploring the antimalarial potential of whole *Cymbopogon citratus* plant therapy. *J Ethnopharmacol.* 2016; 193: 517–523.
- [32] Karthikeyan V, Sundaram V, Maniyan RP, Balasundaram S. Formulation of herbal emulsion based anti-inflammatory cream for skin diseases. *Int J Pharm Sci Rev Res.* 2016; 40(2): 215–220.
- [33] Goes TC, Ursulino FR, Almeida-Souza TH, Alves PB, Teixeira-Silva F. Effect of lemongrass aroma on experimental anxiety in humans. J Altern Complement Med. 2015; 21(12): 766–773.
- [34] Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. *Int J Nanomedicine*. 2015; 10: 893–902.
- [35] Santos Serafim Machado M, Ferreira Silva HB, Rios R, Pires de Oliveira A, Vilany Queiroz Carneiro N, Santos Costa R, Santos Alve W, Meneses Souza FL, Silva Velozo E, Alves de Souza S, Sarmento Silva TM, Silva ML. The anti-allergic activity of *Cymbopogon citratus* is mediated via inhibition of nuclear factor kappa B (Nf-Kb) activation. *BMC Complement Altern Med.* 2015; 15(1): 1–14.
- [36] Sagradas J, Costa G, Figueirinha A, Castel-Branco MM, Silvério Cabrita AM. Gastroprotective effect of *Cymbopogon citratus* infusion on acute ethanol-induced gastric lesions in rats. *J Ethnopharmacol.* 2015; 173: 134–138.

- [37] Jagdale AD, Kamble SP, Nalawade ML, Arvindekar AU. Citronellol: a potential antioxidant and aldose reductase inhibitor from *Cymbopogon citratus*. Int J *Pharm Pharm Sci.* 2015; 7(3): 203–209.
- [38] Ekpenyong CE, Daniel NE, Antai AB. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: potential use in prevention and treatment of anemia. *J Med Food*. 2015; 18(1): 118–127.
- [39] Ekpenyong CE, Daniel NE, Antai AB. Effect of lemongrass tea consumption on estimated glomerular filtration rate and creatinine clearance rate. *J Ren Nutr*. 2015; 25(1): 57–66.
- [40] Bao XL, Yuan HH, Wang CZ, Fan W, Lan MB. Polysaccharides from *Cymbopogon citratus* with antitumor and immunomodulatory activity. *Pharm Biol*. 2015; 53(1): 117–124.
- [41] Ocheng F. Essential oils from Ugandan aromatic medicinal plants: chemical composition and growth inhibitory effects on oral pathogens. *Evid Based Complement Altern Med.* 2015; 2015; Article ID 230832.
- [42] Garcia R. Evaluation of anti-inflammatory and analgesic activities of cymbopogon citratus in vivo-polyphenols contribution. *Res J Med Plant*. 2015; 9(1): 1–13.
- [43] Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG. Hepatoprotective effect of *Cymbopogon citratus* aqueous extract against hydrogen peroxide-induced liver injury in male rats. *Afr J Tradit Complement Altern Med.* 2014; 11(2): 447–451.
- [44] Salim E, Kumolosasi E, Jantan I. Inhibitory effect of selected medicinal plants on the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated human peripheral blood mononuclear cells. *J Nat Med.* 2014; 68(3): 647–653.
- [45] Mitoshi M, Kuriyama I, Nakayama H, Miyazato H, Sugimoto K, Kobayashi Y, Jippo T, Kuramochi K. Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits. *Int J Mol Med.* 2014; 33(6): 1643–1651.
- [46] Carmo ES, Pereira Fde O, Cavalcante NM, Gayoso CW, Lima Ede O. Treatment of Pityriasis versicolor with topical application of essential oil of *Cymbopogon citratus* (DC) Stapf- therapeutic pilot study. *An Bras Dermatol*. 2013; 88(3): 381–385.
- [47] Rahim SM, Taha EM, Mubark ZM, Aziz SS, Simon KD, Mazlan AG. Protective effect of *Cymbopogon citratus* on hydrogen peroxide-induced oxidative stress in the reproductive system of male rats. *Syst Biol Reprod Med*. 2013; 59(6): 329–336.
- [48] Tayeboon GS, Tavakoli F, Hassani S, Khanavi M, Sabzevari O. Effects of *Cymbopogon citratus* and *Ferula assa-foetida* extracts on glutamate-induced neurotoxicity. *In Vitro Cell Dev Biol Anim.* 2013; 49(9): 706–715.
- [49] Ullah N, Khan MA, Khan T, Ahmad W. *Cymbopogon citratus* protects against the renal injury induced by toxic doses of aminoglycosides in rabbits. *Indian J Pharm Sci.* 2013; 75(2): 241–246.
- [50] Bharti SK, Kumar A, Prakash O, Krishnan S, Gupta AK. Essential oil of *Cymbopogon citratus* against diabetes: validation by in vivo experiments and computational studies. *J Bioanal Biomed*. 2013; 5(5): 194–203.
- [51] Bidinotto LT, Costa CA, Costa M, Rodrigues MA. Modifying effects of lemongrass essential oil on specific tissue response to the carcinogen N-methyl-Nnitrosurea in female BALB/c mice. *J Med Food*. 2012; 15(2): 161–168.
- [52] Devi RC, Sim SM, Ismail R. Effect of *Cymbopogon citratus* and citral on vascular smooth muscle of the isolated thoracic rat aorta. *Evid Based Complement Altern Med.* 2012; Article ID 539475.
- [53] Gayathri K, Jayachandran KS, Vasanthi HR, Rajamanickam GV. Cardioprotective effect of lemon grass as evidenced by biochemical and histopathological changes in experimentally induced cardiotoxicity. *Hum Exp Toxicol*. 2011; 30(8): 1073–1082.
- [54] Wuthi-Udomlert M, Chotipatoomwan PP, anyadee S, Gritsanapan W. Inhibitory effect of formulated lemongrass shampoo on malassezia furfur: a yeast associated with dandruff. *Southeast Asian J Trop Med Public Health*. 2011; 42(2): 363–369.
- [55] Bastos JFA, Moreira ÍJA, Ribeiro TP, Medeiros IA. Hypotensive and vasorelaxant effects of citronellol, a monoterpene alcohol, in rats. *Basic Clin Pharmacol Toxicol*. 2010; 106(4): 331–337.

- [56] Costa CA, Kohn DO, de Lima VM, Gargano AC, Florio JC, Costa M. The GABAergic system contributes to the anxiolytic-like effect of essential oil from *Cymbopogon citratus* (lemongrass). *J Ethnopharmacol*. 2011; 137(1): 828–836.
- [57] Devi RC, Sim SM, Ismail R. Spasmolytic effect of citral and extracts of *Cymbopogon citratus* on isolated rabbit ileum. *J Smooth Muscle Res.* 2011; 47(5): 143–156.
- [58] Muchtaridi A, Diantini A, Subarnas A. Analysis of Indonesian spice essential oil compounds that inhibit locomotor activity in mice. *Pharmaceuticals*. 2011; 4(4): 590–602.
- [59] Saeio K, Yotsawimonwat S, Anuchapreeda S, Okonogi S. Development of microemulsion of a potent antityrosinase essential oil of an edible plant. *Drug Discov Ther*. 2011; 5(5): 246–252.
- [60] Chaiyana W, Saeio K, Hennink WE, Okonogi S. Characterization of potent anticholinesterase plant oil based microemulsion. *Int J Pharm*. 2010; 401(1-2): 32–40.
- [61] Silva MR, Ximenes RM, Da Costa JGM, Leal LKAM, De Lopes AA, De Barros Viana GS. Comparative anticonvulsant activities of the essential oils (EOs) from *Cymbopogon winterianus* Jowitt and *Cymbopogon citratus* (DC) Stapf. in mice. *Naunyn Schmiedebergs Arch Pharmacol*. 2010; 381(5): 415–426.
- [62] Cavalheiro AJ, Maree JE, Sibanyoni M. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass (*Cymbopogon citratus*) and gentian violet. *Phytomed*. 2009; 16(2-3): 118–124.
- [63] Adeneye AA, Agbaje EO. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of *Cymbopogon citratus* Stapf. in rats. *J Ethnopharmacol*. 2007; 112(3): 440–444.
- [64] Tognolini M, Barocelli E, Ballabeni V, Bruni R. Comparative screening of plant essential oils: phenylpropanoid moiety as basic core for antiplatelet activity. *Life Sci.* 2006; 78(13): 1419–1432.
- [65] Seibert JB, Rodrigues IV, Carneiro SP, Amparo TR, Lanza JS, Frézard FJG. Seasonality study of essential oil from leaves of *Cymbopogon densiflorus* and nanoemulsion development with antioxidant activity. *Flavour Fragr J*. 2019; 34(1): 5–14.
- [66] Takaisi-Kikuni NB, Tshilanda D, Babady B. Antibacterial activity of the essential oil of *Cymbopogon densiflorus*. *Fitoterapia*. 2000; 71(1): 69–71.
- [67] Padalia RC, Verma RS, Chauhan A, Goswami P, Singh VR, Verma SK, Singh N, Kurmi A, Darokar MP, Saikia D. P-Menthenols chemotype of *Cymbopogon distans* from India: composition, antibacterial and antifungal activity of the essential oil against pathogens. *J Essent Oil Res.* 2018; 30(1): 40–46.
- [68] Munda S, Dutta S, Pandey SK, Sarm N. Antimicrobial activity of essential oils of medicinal and aromatic plants of the North East India: a biodiversity hot spot. *J Essent Oil Bear Plants*. 2019; 22(1): 105–119.
- [69] Le QU, Lay HL, Wu C. The isolation, structural characterization, and anticancer activity from the aerial parts of *Cymbopogon flexuosus*. *J Food Biochem*. 2019; Article ID e12718.
- [70] Li CC, Yu HF, Chang CH, Liu YT. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats. *J Food Drug Anal.* 2018; 26(1): 432–438.
- [71] Han X, Parker T.L. Lemongrass (*Cymbopogon flexuosus*) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. *Biochim Open*. 2017; 4: 107–111.
- [72] Chaisripipat W, Lourith N, Kanlayavattanakul M. Anti-dandruff hair tonic containing lemongrass (*Cymbopogon flexuosus*) oil. *Forsch Komplementmed*. 2015; 22(4): 226–229.
- [73] Chandra H, Abad Farooq AH. Lipoxygenase inhibitory, antioxidant, and antimicrobial activities of selected essential oils. *Asian J Pharm Clin Res.* 2014; 7(4): 79–83.
- [74] Saxena S, Uniyal V, Bhatt RP. Inhibitory effect of essential oils against *Trichosporon ovoides* causing piedra hair infection. *Braz J Microbiol.* 2012; 43(4): 1347–1354.
- [75] Chandrashekar KS, Prasanna KS. Analgesic and anti-inflammatory activities of the essential oil from Cymbopogon flexuosus. Pharmacogn J. 2010; 2(14): 23-

25.

- [76] Bassole IH, Lamien-Meda A, Bayala B, Obame LC, Ilboudo AJ, Franz C, Novak J, Nebie RC, Dick MH. Chemical composition and antimicrobial activity of *Cymbopogon citratus* and *Cymbopogon giganteus* essential oils alone and in combination. *Phytomedicine*. 2011; 18(12): 1070–1074.
- [77] Bedi Sahouo G, Tonzibo ZF, Boti B, Chopard C, Mahy JP, N'Guessan YT. Anti-inflammatory and analgesic activities: chemical constituents of essential oils of Ocimum gratissimum, Eucalyptus citriodora and Cymbopogon giganteus inhibited lipoxygenase L-1 and cyclooxygenase of PGHS. Bull Chem Soc Ethiop. 2003; 17(2): 191–197.
- [78] Huang XW, Feng YC, Huang Y, Li HL. Chemical composition, antioxidant and the possible use as skin-care ingredient of clove oil (*Syzygium aromaticum* (L.) Merr. & Perry) and citronella oil (*Cymbopogon goeringii*) from China. *J Essent Oil Res.* 2013; 25(4): 315–323.
- [79] Khan SJ, Afroz S, Khan RA. Antihyperlipidemic and anti-hyperglycemic effects of *Cymbopogon jwarancusa* in high-fat high-sugar diet model. *Pak J Pharm Sci.* 2018; 31(4): 1341–1345.
- [80] Mahboubi M, Kazempour N. Biochemical activities of Iranian Cymbopogon olivieri (Boiss) Bor. essential oil. Indian J Pharm Sci. 2012; 74(4): 356–360.
- [81] Dar MY. Chemical composition, in vitro cytotoxic and antioxidant activities of the essential oil and major constituents of *Cymbopogon jawarancusa* (Kashmir). *Food Chem.* 2011; 129(4): 1606–1611.
- [82] Prasad C, Kumar V, Kamthan KP, Singh UB, Srivastava SK, Srivastava RB. Antioxidant and antimicrobial activity of ethanol and water extracts of *Cymbopogon jwarancusa* (Jones.) leaves. *J Appl Pharm Sci.* 2011; 1(9): 68–72.
- [83] Hadjiakhoondi A, Vatandoost H, Jamshidi A. Chemical constituents and efficacy of *Cymbopogon olivieri* (Boiss.) Bar essential oil against malaria vector, *Anopheles stepensi*. *Daru J Pharm Sci*. 2003; 11(3): 125–128.
- [84] Feng J, Shi W, Miklossy J, Tauxe GM, McMeniman CJ, Zhang Y. Identification of essential oils with strong activity against stationary phase *Borrelia burgdorferi*. *Antibiotics* (*Basel*). 2018; 7(4): 1–14.
- [85] Murbach Teles Andrade BF, Nunes Barbosa L, Bérgamo Alves FC, Pereira Marques AF, Albano M, Mores Rall VL, Brüggemann H, Fernandes Júnior A. The impact of *Cymbopogon martinii* essential oil on *Cutibacterium* (formerly *Propionibacterium*) acres strains and its interaction with keratinocytes. J Pharm Pharmacogn Res. 2018; 70(12): 1688–1699.
- [86] Gemeda N, Tadele A, Lemma H, Girma B, Addis G, Tesfaye B, Abebe A, Gemechu W, Yirsaw K, Teka F, Haile C, Amano A, Woldkidan S, Geleta B, Debella A. Development, characterization, and evaluation of novel broad-spectrum antimicrobial topical formulations from *Cymbopogon martini* (Roxb.) W. Watson essential oil. *Evid Based Complement Alternat Med.* 2018; Article ID 9812093.
- [87] Simões BM, Kohler B, Clarke RB, Stringer J, Novak-Fraze L, Young K, Rautemaa-Richardson R, Zucchini G. Estrogenicity of essential oils is not required to relieve symptoms of urogenital atrophy in breast cancer survivors. *Ther Adv Med Oncol.* 2018; 10: 1–11.
- [88] Jain N, Sharma M. Chemical composition of the leaf oil of *Cymbopogon martinii* var. *sofia* collected from udaipur, rajasthan and their screening against fungi causing dermatophytosis in human beings. *J Essent Oil Bear Plants*. 2017; 20(3): 801–808.
- [89] Andrade BF, Braga CP, Dos Santos KC, Barbosa LN, Rall VL, Sforcin JM. Effect of inhaling *Cymbopogon martinii* essential oil and geraniol on serum biochemistry parameters and oxidative stress in rats. *Biochem Res Int*. 2014; Article ID 493183.
- [90] Janbaz KH, Qayyum A, Saqib F, Imran I, Zia-Ul-Haq M, De Feo V. Bronchodilator, vasodilator and spasmolytic activities of *Cymbopogon martinii*. J Physiol Pharmacol. 2014; 65(6): 859–866.
- [91] Buch P, Patel V, Ranpariya V, Sheth N, Parmar S. Neuroprotective activity of *Cymbopogon martinii* against cerebral ischemia/reperfusion-induced oxidative stress in rats. *J Ethnopharmacol*. 2012; 142(1): 35–40.
- [92] Ghadyale V, Takalikar S, Haldavnekar V, Arvindekar A. Effective control of postprandial glucose level through inhibition of intestinal alpha glucosidase by *Cymbopogon martinii* (Roxb). *Evid Based Complement Altern Med.* 2012; Article ID 372909.
- [93] Sinha S, Biswas D, Mukherjee A. Antigenotoxic and antioxidant activities of palmarosa and citronella essential oils. J Ethnopharmacol. 2011; 137(3): 1521-

1527.

- [94] Gacche RN, Shaikh RU, Chapole SM, Jadhav AD, Jadhav SG. Kinetics of inhibition of monoamine oxidase using *Cymbopogon martinii* (Roxb.) Wats: a potential antidepressant herbal ingredient with antioxidant activity. *Indian J Clin Biochem*. 2011; 26(3): 303–308.
- [95] Pontes EKU, Melo HM, Nogueira JWA, Firmino NCS, De Carvalho MG, Catunda Junior FEA, Cavalcante TTA. Antibiofilm activity of the essential oil of citronella (*Cymbopogon nardus*) and its major component, geraniol, on the bacterial biofilms of *Staphylococcus aureus*. Food Sci Biotechnol. 2019; 28(3): 633– 639.
- [96] Ilahi I, Yousafzai AM, Haq TU, Ali H, Rahim A, Sajad MA, Khan AN, Ahmad A, Ullah S, Zaman S, Bibi A, Hussain S, Rahman MU, Saqib MS, Ahmad B, Attaulla M. Oviposition deterrence and adult emergence inhibition activities of *Cymbopogon nardus* against *Culex quinquefasciatus* with study on non-target organisms. *Appl Ecol Environ Res.* 2019; 17(2): 4915–4931.
- [97] Wibowo DP, Febriani Y, Riasari H, Aulifa DL. Chemical composition, antioxidant and antibacterial activities of the essential oils of medicinal plant *Cymbopogon nardus* from Lembang West Java. *Res J Chem Environ*. 2018; 22(Special Issue 1): 1–4.
- [98] Kandimalla R, Kalita S, Choudhury B, Dash S, Kalita K. Chemical composition and anti-candidiasis mediated wound healing property of *Cymbopogon nardus* essential oil on chronic diabetic wounds. *Front Pharmacol.* 2016; 7: 1–8.
- [99] Ocheng F, Bwanga F, Almer Boström E, Joloba M, Borg-Karlson AK, Yucel-Lindberg T, Obua C. Essential oils from Ugandan medicinal plants: in vitro cytotoxicity and effects on IL-1 β-Induced proinflammatory mediators by human gingival fibroblasts. *Evid Based Complement Altern Med.* 2016; Article ID 5357689.
- [100] De Toledo LG, Ramos MA, Sposito L, Castilho EM, Pavan FR, Lopes Ede O, Zocolo GJ, Silva FA, Soares TH, Dos Santos AG, Bauab TM, De Almeida MT. Essential oil of *Cymbopogon nardus* (L.) Rendle: a strategy to combat fungal infections caused by *Candida* species. *Int J Mol Sci.* 2016; 17(8): 1–16.
- [101] Rungqu P, Oyedeji O, Nkeh-Chungag B, Songca S, Oluwafemi O, Oyedeji A. Anti-inflammatory activity of the essential oils of *Cymbopogon validus* (Stapf) Stapf ex Burtt Davy from Eastern Cape, South Africa. *Asian Pac J Trop Med.* 2016; 9(5): 426–431.
- [102] Batubara I. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve. *Nutrients*. 2015; 7(3): 1859–1870.
- [103] Omar E, Pavlović I, Drobac M, Radenković M, Branković S, Kovačević N. Chemical composition and spasmolytic activity of *Cymbopogon nervatus* (Hochst.) Chiov. (Poaceae) essential oil. *Ind Crops Prod.* 2016; 91: 249–254.
- [104] El-Kamali HH, Hamza MA, El-Amir MY. Antibacterial activity of the essential oil from *Cymbopogon nervatus* inflorescence. *Fitoterapia*. 2005; 76(5): 446–449.
- [105] Omoruyi BE, Muchenje V. Phytomedical assessment of two *Cymbopogon* species found in Nkonkobe municipality: toxicological effect on human chang liver cell line. *BMC Complement Altern Med.* 2017; 17(1): 1–13.
- [106] Abu-Serie MM, Habashy NH, Maher AM. In vitro anti-nephrotoxic potential of *Ammi visnaga*, *Petroselinum crispum*, *Hordeum vulgare*, and *Cymbopogon* schoenanthus seed or leaf extracts by suppressing the necrotic mediators, oxidative stress and inflammation. *BMC Complement Altern Med*. 2019; 19(1): 1–17.
- [107] Aous W, Benchabane O, Outaleb T, Hazzit M, Mouhouche FW. Essential oils of *Cymbopogon schoenanthus* (L.) Spreng. from Algerian Sahara: chemical variability, antioxidant, antimicrobial and insecticidal properties. *J Essent Oil Res.* 2019; 31(6):1–11.
- [108] Saggu S, Rehman H, Aziz AT, Alzeibr FMA, Oyouni AAA, Zidan N. *Cymbopogon schoenanthus* (Ethkher) ameliorates cadmium induced toxicity in swiss albino mice. *Saudi J Biol Sci.* 2016; 26(7): 1875–1881.
- [109] Elbashir SMI, Devkota HP, Wada M, Kishimoto N, Moriuchi M, Shuto T, Misumi S, Kai H, Watanabe T. Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen sudanese medicinal plants. *BMC Complement Altern Med*. 2018; 18(1): 1–13.
- [110] Pavlović I, Omar E, Drobac M, Radenković M, Branković S, Kovačević N. Chemical composition and spasmolytic activity of *Cymbopogon schoenanthus* (L.) Spreng. (Poaceae) essential oil from Sudan. *Arch Biol Sci.* 2017; 69(3): 409–415.

- [111] Villareal MO, Kume S, Neffati M, Isoda H. Upregulation of mitf by phenolic compounds-rich *Cymbopogon schoenanthus* treatment promotes melanogenesis in B16 melanoma cells and human epidermal melanocytes. *Biomed Res Int*. 2017; 2017(13): 1–11.
- [112] Hashim GM, Almasaudi SB, Azhar E, Al Jaouni SK, Harakeh S. Biological activity of *Cymbopogon schoenanthus* essential oil. *Saudi J Biol Sci.* 2017; 24(7): 1458–1464.
- [113] Yagi S, Babiker R, Tzanova T. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. *Asian Pac J Trop Med.* 2016; 9(8): 763–770.
- [114] El-Nezhawy AOH, Maghrabi IA, Mohamed KM, Omar HA. *Cymbopogon proximus* extract decreases L-NAME-induced hypertension in ratsint. *J Pharm Sci Rev Res.* 2014; 27(1): 66–69.
- [115] Ben Othman M, Han J, El Omri A, Ksouri R, Neffati M, Isoda H. Antistress effects of the ethanolic extract from *Cymbopogon schoenanthus* growing wild in Tunisia. *Evid Based Complement Altern Med*. 2013; Article ID 737401.
- [116] Al-Taweel AM, Fawzy GA, Perveen S, El Tahir KEH. Gas chromatographic mass analysis and further pharmacological actions of *Cymbopogon proximus* essential oil. *Drug Res (Stuttg)*. 2013; 63(9): 484–488.
- [117] Bossou AD, Mangelinckx S, Yedomonhan H, Boko PM, Akogbeto MC, De Kimpe N. Chemical composition and insecticidal activity of plant essential oils from benin against *Anopheles gambiae* (Giles). *Parasit Vectors*. 2013; 6(1): 1–17.
- [118] Katiki LM, Chagas AC, Bizzo HR, Ferreira JF, Amarante AF. Anthelmintic activity of *Cymbopogon martinii*, *Cymbopogon schoenanthus* and *Mentha piperita* essential oils evaluated in four different in vitro tests. *Vet Parasitol*. 2011; 183(1-2): 103–108.
- [119] Sheweita SA, Newairy AA, Mansour HA, Yousef MI. Effect of some hypoglycemic herbs on the activity of phase I and II drug-metabolizing enzymes in alloxan-induced diabetic rats. *Toxicology*. 2002; 174(2): 131-139.
- [120] Cavalcanti AL, Aguiar YPC, Santos FGD, Cavalcanti AFC. Susceptibility of *Candida albicans* and *Candida non-albicans* strains to essential oils. *Biomed Pharmacol J.* 2017; 10(3): 1101–1107.
- [121] Santos PL, Quintans JSS, Oliveira MGB, Brito RG, Serafini MR, Menezes PP, Santos MRV, Alves PB, De Lucca Junior W, Blank AF, La Rocca V, Almeida RN, Quintans LJ. Preparation, characterization, and pharmacological activity of *Cymbopogon winterianus* Jowitt ex Bor (Poaceae) leaf essential oil of β-cyclodextrin inclusion complexes. *Evid Based Complement Altern Med.* 2015; Article ID 502454.
- [122] Leite BLS, Souza TT, Antoniolli AR, Guimarães AG, Siqueira RS, Quintans JSS, Bonjardim LR, Alves PB, Blank AF, Botelho MA, Almeida JRGS, Lima JT, Araújo AAS, Quintans-Júnior LJ. Volatile constituents and behavioral change induced by *Cymbopogon winterianus* leaf essential oil in rodents. *Afr J Biotechnol.* 2011; 10(42): 8312–8319.
- [123] De Menezes IA, Moreira IJ, De Paula JW, Blank AF, Antoniolli AR. Cardiovascular effects induced by *Cymbopogon winterianus* essential oil in rats: involvement of calcium channels and vagal pathway. *J Pharm Pharmacol*. 2010; 62(2): 215–221.
- [124] Lertsatitthanakorn P, Taweechaisupapong S, Arunyanart C, Aromdee C, Khunkitti W. Effect of citronella oil on time kill profile, leakage and morphological changes of *Propionibacterium acnes*. J Essent Oil Res. 2010; 22(3): 270–274.
- [125] Leite BLS, Bonfim RR, Antoniolli AR, Thomazzi SM, Araújo AAS, Blank AF, Estevam CS, Cambui EVF, Bonjardim LR, Albuquerque Júnior RLC, Quintans-Júnior LJ. Assessment of antinociceptive, anti-inflammatory and antioxidant properties of *Cymbopogon winterianus* leaf essential oil. *Pharm Biol*. 2010; 48(10): 1164–1169.
- [126] Quintans Jr LJ, Almeida JRGS, Lima JT, Nunes XP, Siqueira JS, De Oliveira LEG, Almeida RN, De Athayde-Filho PF, Barbosa-Filho JM. Plants with anticonvulsant properties a review. *Rev Bras Farmacogn*. 2008; 18(S): 798–819.
- [127] De Mendonça FAC, Da Silva KFS, Dos Santos KK, Ribeiro Júnior KAL, Sant'Ana AEG. Activities of some Brazilian plants against larvae of the mosquito *Aedes aegypti. Fitoterapia.* 2005; 76(7-8): 629–636.