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Abstract 
Background and objectives: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenole 

phytoalexin which exerts potential cardioprotective effects, but the cellular and molecular mechanisms 

responsible for these effects are still unknown. Cardiac renin angiotensin system (RAS) over-

activation plays an important role in pathogenesis of left ventricular hypertrophy (LVH) progression. 

The aim of the study was to investigate the effects of resveratrol on the main components of RAS 

during early and late phase of myocardial hypertrophy. Methods: To consider the early and late phase 

of LVH, the rats were studied two and sixteen weeks after abdominal aorta banding without treatment 

(H2w and H16w groups, respectively) or with resveratrol (R) treatment. Intact animals served as 

control (Ctl). Arterial blood pressure was recorded by carotid cannulation. Angiotensin II (Ang II) 

level was measured using ELISA kit. Gene expression was evaluated by Real time RT-PCR technique. 

Cardiomyocyte size and fibrosis were assessed using haematoxylin/eosin and Masson trichrome 

staining, respectively Results: Results of this study showed that in H2w group AT1a mRNA level was 

increased significantly (p<0.05 vs. Ctl). In H16w group cardiac level of Ang II and also renin, 

angiotensinogen, and AT2R mRNA levels were increased significantly (p<0.001 vs. Ctl). In H16w+R 

group, tissue concentration of Ang II as well as renin and angiotensinogen mRNA level decreased 

significantly compared with H16w group (p<0.001, p<0.5 and p<0.05 ,respectively). Conclusion: 

Progression of LVH is accompanied by dynamic changes in RAS components expression in 

myocardial tissue. Resveratrol protects the heart against pressure overload-induced hypertrophy in 

part via RAS suppression. 

 

Keywords: left ventricular hypertrophy; renin-angiotensin system; resveratrol  

Citation: Hashemizadeh
 
T, Pedarzadeh

 
A,

 
Naghedy

 
A, Dorri Mashhadi

 
F, Zavvar Reza

 
J, Safari

 
F, Safari

 
F. 

Resveratrol suppresses cardiac renin angiotensin system in the late phase of left ventricular hypertrophy. Res J 

Pharmacogn. 2019; 6(2): 25-37. 

Introduction 
Nowadays, hypertension (HTN) is considered as 

a widespread disease which can cause 

complications such as left ventricular 

hypertrophy (LVH) and heart failure [1,2]. LVH 

represents the adaptive compensatory response of 

the heart to chronic pressure and volume 

overload, myocardial ischemia and valvular 

diseases. LVH is characterized by increased heart 

mass which is associated with cardiomyocytes 

growth and extracellular matrix remodeling. If 
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the causes of adaptive hypertrophy (early phase) 

persist, it can eventually enter the mal-adaptive 

phase (late phase) and cause complications such 

as cardiomyopathy, systolic and diastolic 

dysfunction, heart failure and sudden cardiac 

death [3,4]. Despite increasing number of studies, 

cellular and molecular mechanisms responsible 

for LVH progression are not known precisely.  

Strong evidence suggests the important role of 

renin angiotensin system (RAS) activity in 

pathogenesis of cardiovascular diseases [5-7]. 

Recent studies have revealed the presence of a 

“local cardiac RAS”; angiotensin II (Ang II) is 

produced locally in the myocardial tissue, 

independent of the components of systemic RAS. 

Overproduction of intracardiac Ang II leads to 

hypertension, LVH and heart failure [8,9]. 

Therefore, pharmacological blockade of the RAS 

at the level of Ang II production or function 

ameliorates cardiac remodeling in clinical [10,11] 

and experimental [12,13]  models of heart 

disease.  The main cardiovascular effects of Ang 

II are mediated by type 1 (AT1aR, AT1bR) and 

type 2 receptors (AT2R), which are expressed in 

cardiomyocytes and vascular cells [14]. The 

mechanisms by which RAS participates in 

hypertrophy progression and thereby heart failure 

are enhanced production of reactive oxygen 

specious (ROS), pro-fibrotic proteins, 

proliferative and proapoptotic factors  leading to 

increased cardiac mass without any positive 

effect on pumping function of the heart [15,16].  

There are many therapeutic strategies available 

for treating hypertrophy such as β-blockers, 

angiotensin receptor blockers or angiotensin 

converting enzyme inhibitors (ACEIs), but 

mortality associated with heart failure is still 

rising. Thus, it is necessary to find new 

pharmacological approaches for the treatment of 

mal-adaptive hypertrophy.  

Recent studies have revealed that the polyphenol 

resveratrol (3,5,4′-trihydroxy-trans-stilbene), 

which is found in grapes, peanuts and berries, 

exhibits powerful antioxidant, anti-inflammation 

and anti-aging properties [17]. Although there are 

few findings about the cardiovascular effects of 

resveratrol and the underlying mechanisms, 

several lines of studies demonstrated that 

resveratrol can prevent hypertension and cardiac 

hypertrophy and remodeling [18-20]. It also 

protects the heart against coronary heart disease 

and ischemia-reperfusion injury and inhibits 

platelet aggregation [21,22]. Our recent study has 

shown that, three weeks after aortic banding, the 

cardiac level of Ang II and AT1a mRNA 

expression increases and resveratrol prevents 

hypertrophy-induced AT1a receptor upregulation 

in adaptive hypertrophy [23], although the 

progression of hypertrophy to mal-adaptive phase 

was not investigated.  

Despite the well-known role of RAS in the 

pathophysiology of cardiac hypertrophy and the 

novel cardioprotective effects of resveratrol, 

there has been no report on the possible effects of 

resveratrol on RAS components level during 

progression of cardiac hypertrophy. Therefore, in 

the current study, we aimed to investigate the 

effect of resveratrol on the expression of key 

components of RAS in both early and late 

phases of pressure overload-induced LVH in rats.  

 

Materials and Methods 
Ethical considerations 

All procedures involving animals were approved 

by the Animal Ethics Care and Use Committee of 

Shahid Sadoughi University of Medical Science 

(Code: 3894, 18-02-2016). 

 

Animals and treatments  
Male Wistar rats (150-190 g) were kept under 

standard conditions (12 h light/dark cycle; 25 ºC 

temperature). The rats were randomly divided 

into five groups. Two groups of rats underwent 

abdominal aortic banding to induce cardiac 

hypertrophy without any treatment. Samples 

were taken 2 and 16 weeks after surgery (H2w 

and H16w groups, respectively). Two separate 

groups of rats were treated with resveratrol and 

subjected to aortic banding (H2w+R and 

H16w+R groups). In our study, 2 and 16 weeks 

after aortic banding were considered as the early 

and progressive phases of hypertrophy, 

respectively [24,25]. Intact rats served as control 

(Ctl).  

Treatment groups received resveratrol (Cat No. 

R5010, Sigma-Aldrich, USA.)  (2.5 mg/kg/day, 

dissolved in DMSO 4% and diluted in distilled 

water, intraperitoneal injection) from the day of 

surgery until the end of experiment. The previous 

studies have shown that resveratrol at the 

mentioned dose exerts cardioprotective effects in 

experimental models of HTN and LVH without 

lowering blood pressure [26,27]. 

 

Induction of LVH by aortic banding 

Suprarenal abdominal aorta was constricted to 
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induce pressure overload-induced LVH. Briefly, 

the rats were anesthetized by IP injection of 

ketamine (70-90 mg/kg) and xylizine (10 mg/kg). 

Incision was made in the left flank. After 

exposing the suprarenal aorta, a 21 gauge needle 

was placed beside the artery and a suture was tied 

around it. The needle was removed after partial 

banding of the artery. Abdominal wall muscles 

and skin were sutured. In hypertrophied groups, 

tetracycline was administered intramuscularly for 

six days. Two and sixteen weeks after the surgery, 

the rats were weighted, anesthetized again, and 

arterial blood pressure was measured directly by 

carotid artery cannulation connected to a power 

lab system. The heart was excised quickly, 

washed with cold saline and weighted to evaluate 

heart weight to body weight ratio (HW/BW). 

Then, left ventricular tissue was separated and 

kept in -80 ºC for further molecular studies 

[23,28]. Three samples from each group were 

fixed in formaldehyde 10% to investigate the 

effect of the interventions on cardiomyocytes size, 

as the main marker of cardiac hypertrophy. 

Following tissue processing, the cardiac sections 

(5 µm) were stained with hematoxylin and eosin. 

Then, the pictures were captured by a Nikon 

microscope equipped with a Sony, Syber-shot, 

DSCWX200 camera. The cell area was measured 

using image J software and reported relative to 

control. Areas of at least 180 cells in each group 

were measured.  

 

Real-time quantitative RT-PCR 

Left ventricular tissue was lysed by RNX-plus 

solution (Sinagen, Iran) and homogenized 

(T10Bhomogenizer, Germany). RNA was 

extracted according to the manufacturer’s 

instructions. The RNA concentration was 

measured using the nanodrop set (Biotech 

Instrument Model: Box998, USA) at 260 

nanometer wavelength. For cDNA synthesis, 

reverse transcription reaction was done using 

Revert AidTMM-MuLV Reverse Transcriptase 

(Fermentas, USA). cDNA from experimental 

groups underwent real time RT-PCR reaction in 

presence of specific primers using MasterMix 

containing SYBR green (Takara, Japan). The 

primer sequences used for the reaction have been 

presented in table 1. The GAPDH gene was 

selected as the reference. Gene expression was 

compared according to 2
-ΔΔct

 method [29].  

 

Cardiac level of Angiotensin II assay by 

ELISA test 
To evaluate Ang II level, left ventricular tissue 

was lysed and homogenized using 1 mL lysis 

solution (containing 20 mM HEPES, 2 mM 

EGTA, 1 mM EDTA, 50 mM Tris-HCl, SDS 

0.1%,  sodium deoxycholate: 0.25%, Triton 1%, 

150 Mm NaCl, supplemented with protease 

inhibitor PMSF). The homogenized tissue was 

centrifuged (45 min/4 ºC at 13000 RPM) and 

then the supernatant was used for measurement 

of Ang II using ELISA kit (Phoenix, USA) 

following the kit instructions. 

 

Statistical analysis 
Blood pressure and heart weight to body weight 

ratio were analyzed using Kruskal-Wallis test 

with Dunn’s post-test for multiple comparison. 

Ang II and transcriptional level of target genes 

were analyzed using one-way ANOVA followed 

by Tukey post-test. P<0.05 was considered to be 

statically significant. Data have been presented as 

mean ± SEM. Statistical analysis was done using 

Prism software (version 5.0). 

 

Results and Discussion 

Certain plants such as peanuts, soy, grapes, cocoa 

and berries produce resveratrol in response to 

stress, fungal invasion and injury. Therefore, this 

phytoalexin phenolic compound acts as the 

defensive response in a number of plant species 

[30]. Studies have shown that regular 

consumption of peanut (three to five times per 

week) decreases the risk of coronary heart 

disease. 

Table 1. Primer sequences used in the study 

Gene Forward primer (5´-3´) Reverse primer (5´-3) 

AT1a CCATTCACCCTGCCTCAG ACGGCTTTGCTTGGTTACTC 

AT1b ATGTCTCCAGTCCCCTCTCA TGACCTCCCATCTCCTTTTG 

AT2 CAATCTGGCTGTGGCTGACTT TGCACATCACAGGTCCAAAGA 

Angiotensinogen CAGCACGACTTCCTGACTTGGAT GGATGCTGTTGAGAACCTCTCCCA 

Renin AGGATCAGTGCTGAATGGGGTGA GGTTGTGAATCTCACAGGCAGTGT 

GAPDH AACGACCCCTTCATTGAC TCCACGACATACTCAGCAC 
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Since peanut contains high concentration of 

stilbenoids such as resveratrol, especially at the 

early stage of growth, it is suggested that the 

cardioprotective effect of this nut is related to the 

presence of resveratrol [31]. Itadori tea which is 

used as the traditional herbal remedy for 

cardiovascular diseases contains high 

concentration of resveratrol too [30].  
In the first part of current study we investigated 
the effect of resveratrol on hemodynamic 
parameters in experimental groups. As presented 
in table 2, systolic and diastolic blood pressure 
increased significantly in H2w group (p<0.001 
and p<0.01 vs. Ctl, respectively). In H2w+R 
group, systolic and diastolic pressure was 
significantly different from those in the H2w 
group (p<0.05 and p<0.01, respectively). In 
H16w and H16w+R groups, blood pressure was 
not significantly different compared to that in the 
Ctl group, suggesting progression of 
compensated hypertrophy. 
Furthermore, a significant increase in HW/BW 
ratio was observed in both hypertrophied groups 
(H2w and H16w: p<0.001; vs. Ctl). However, in 
H2w+R and H16w+R  groups, which were 
treated with resveratrol, HW/BW ratio decreased 
significantly in comparison to non-treated groups 
(p<0.001 and p<0.01, respectively) (figure 1). 
Cardiomyocyte size also increased in 
hypertrophied groups (p<0.001) and resveratrol 
pretreatment prevented this increase (figure 2).   
In this study, we tried to evaluate the effects of 
resveratrol on LVH progression and we could 
examine its effects on some LVH parameters. 
The important point was that resveratrol inhibited 
abdominal aorta banding-induced hypertension. 
The increase in left ventricular mass was also 
completely prevented in animals receiving 
resveratrol. The effect of resveratrol on aortic 
banding-induced hypertension has been indicated 
in previous studies including our recent 
study.  Therefore, it is suggested that resveratrol 
does not exert hypotensive effect at baseline, but 
it prevents aortic banding-induced hypertension 
[23,26,27]. In our study, resveratrol decreased 

HW/BW ratio and this effect was accompanied 
by the decrease of cell area which reveals the 
antihypertrophic effect of resveratrol. It is 
possible that the antihypertrophic effect of 
resveratrol is through regulation of blood 
pressure. In other words, resveratrol exerted its 
antihypertrophic effect by preventing aortic 
banding-induced hypertension. However, it 
should be noted that resveratrol can suppress pro-
hypertrophic signaling pathways independent of 
its effect on blood pressure. For example, 
resveratrol inhibits calcineurin-nuclear factor of 
activated T cells (NFAT) [32] and Akt pathways 
and activates AMP-activated protein kinas, thus 
suppressing protein synthesis in cardiomyocytes 
[33]. Resveratrol also activates AMPK via LKB1 
and inhibits Akt, thus suppressing protein 
synthesis and gene transcription. 

Many lines of evidence have confirmed that 
resveratrol applies most of its protective 
properties by activation of sirtuin-1 deacetylase, 
which is shown to protect cardiomyocytes against 

oxidative injury [34,35]. Resveratrol abolished 
aorta banding induced-hypertrophy in rats 
through upregulation of nitric oxide synthase [36]. 
It has prevented hypertension through activation 
of LKB1-AMP-eNOS signaling pathway and 
suppressed cardiac hypertrophy in spontaneously 

hypertensive rats as well as mice under Ang 
infusion [18].  
Cardioprotective effects of resveratrol were also 
pointed out in ischemic injury. Resveratrol 
decreases infarct area size in ischemic 
myocardium, suppresses cardiac tissue ANP level 

and enhances cardiac function [37]. Our earlier 
study also showed that low doses of resveratrol in 
combination with vitamin D decreased infarct 
size and ischemic reperfusion arrhythmias 
prevalence and reinforced antioxidant factors 
expression [38].  
Results from the next part of our study showed 
that progression of pressure overload-induced 
LVH was accompanied by dynamic changes in 
cardiac levels of Ang II.  

   

Table 2. Heart to body weight ratio and hemodynamic parameters 

 Ctl H2w H2w+R H16w H16w+R 

Systolic pressure (mm Hg) 110.3±7.5 149.6±8.3
***

 127.8±7.1
#
 125.2±6.8 131.2±5.9 

Diastolic pressure (mm Hg) 71.6±3.8 113.3±5.1
**

 96.5±3.6
##

 86.3±4.7 79.4±5.0 

Heart Rate 301±14 276±16 285±16 251±14 288±12 

Hemodynamic parameters in control (Ctl) and hypertrophied groups two and sixteen weeks after 

aortic banding (H2w and H16w, respectively) in the presence or absence of resveratrol (R); 

**p<0.01 and ***p<0.001 vs. Ctl.#p<0.05 and ##p<0.01 vs. H2w 
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Figure 1. Heart to body weight ratio; two or sixteen weeks after aortic banding the heart weight and body weight of untreated 

rats (H2w and H16w groups ,respectively) and resveratrol (R)-treated rats were measured. Intact animals served as control (Ctl). 

Heart sections were stained with Masson’s Trichrome to confirm cardiac fibrosis. Images of four sections per heart (three hearts 

per group) were taken at a magnification of ×20. ***P<0.001 vs. Ctl. 

 
As illustrated in figure 3, Ang II level increased 
significantly in left ventricular tissue of H16w 
group compared with the control group (p<0.001). 
However, in H16w+R group, in which the 

animals were treated with resveratrol, Ang II 
level was significantly different from that in the 
H16w group (P<0.001). 
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Figure 2. Cardiomyocytes area; two or sixteen weeks after aortic banding, heart sections of untreated rats (H2w and H16w 

groups ,respectively) and resveratrol(R)-treated rats were stained with Hematoxyline/eosin and images were taken at a 

magnification of ×20. Areas of 180 cells per group (60 cells per heart) were measured using Image J software.  Intact animals 

served as control (Ctl). ***P<0.001 vs. Ctl. 

 
In H2w groups, the change in the tissue level of 

Ang II was not statistically significant. In our 

study, tissue level of Ang did not change two 

weeks after abdominal aorta banding (early phase 

of hypertrophy), but our recent study showed that 

Ang II level increased in left ventricular tissue 

three weeks after banding of artery [23]; 

therefore, it is possible that progression of LVH 

from two weeks to three weeks is associated with 

gradual increase of Ang II production in the 

heart. The important role of RAS in pathogenesis 

of cardiovascular diseases such as hypertrophy 

has been evaluated in several studies. RAS can be 

divided into 2 parts: 1. Classical RAS: also 

known as circulatory RAS, it is identified as the 

important component in blood pressure and body 

water volume regulatory system. 2. Local cardiac 

RAS: studies have shown that all of the needed 

ingredients to produce Ang II are available in the 

heart tissue and expression of renin, 

Groups 
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angiotensinogen, ACE and Ang receptors in 

myocardial tissue is proved. Therefore, 

researchers believe that a notable amount of Ang 

II in heart is produced in situ [39]. Cardiac RAS 

overactivation plays an important role in 

pathogenesis of hypertension and LVH.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3. Cardiac level of Angiotensin II (Ang II); in the 

left ventricular tissue of non-treated and resveratrol-treated 

(R) rats two and sixteen weeks after aortic banding Ang II 

concentration was measured (H2w and H16w, respectively). 

Intact animal served as control (Ctl); ***p<0.001 vs. Ctl 

 

Ang II triggers the molecular pathways of 

hypertrophy by activation of phospholipase C 

and D, mitogen-activated protein kinase (MAPK) 

and JAK-STAT signaling pathways [40].Chronic 

Ang II prescription causes a rise in expression of 

fibrotic marker proteins such as collagen through 

activation of transforming growth factor beta 

(TGF-β) [41]. When the heart is exposed to 

volume or pressure overload, stretched myocytes 

release Ang II, indicatings that Ang II can be a 

mediator for stretch-induced hypertrophy [42]. 

As Ang II level increases dramatically in the late 

phase of hypertrophy, the key role of this system 

is confirmed in pathogenesis of hypertrophy 

progression.    

Previous studies have demonstrated that volume 

or pressure overload of the heart is accompanied 

by dynamic changes in transcription level of Ang 

II receptors [7,23]. Therefore, this issue was 

assessed in the current study. Evaluating 

transcriptional level of the main receptors of Ang 

II in the left ventricular tissue indicated that 

AT1aR mRNA level increased in H2w group by 

1.5 fold, which shows a significant difference in 

comparison to the Ctl (p<0.05) (figure 4).  

There was no significant difference among the 

experimental groups regarding AT1bR mRNA 

level.  

In other words, AT1aR mRNA level increased in 

the early phase of hypertrophy, but it returned to 

the normal level in the late phase. It is supposed 

that upregulation of AT1aR in the early stage of 

LVH increases the sensitivity of the heart to Ang 

II.   

Several studies have demonstrated that AT1R, 

especially AT1a receptor, was responsible for 

pathological effects of Ang in the heart. Animals 

with AT1R overexpression showed severe 

cardiac hypertrophy and fibrosis [43]. AT1R is 

expressed in cardiac cardiomyocytes and 

fibroblasts while AT2R is expressed in 

fibroblasts and endothelial cells. In rats, AT1R 

consists of 2 sub-types named AT1aR and 

AT1bR which are respectively located on 

chromosomes No. 17 and 2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Transcriptional levels of Ang II receptors; the 

mRNA levels of Ang II  type 1 (AT1aR, AT1bR) and type 2 

(AT2R) receptors was evaluated in the left ventricular tissue 

of non-treated and resveratrol-treated (R) hypertrophied rats 

two and sixteen weeks after aortic banding (H2w and H16w). 

Intact animal served as control (Ctl). *p<0.05, ***p<0.001 vs 

Ctl 

 

Groups 

Groups 
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Increase of AT1R density in cardiac tissue 

following hypertension and cardiomyopathy has 

also been reported [14,44]. Ang II applies 

vasoconstriction and negative inotropic effects on 

heart using AT1aR rather than AT1bR [45]. 

There is little information available about AT2R 

mediated cardiovascular effects. Being only 3% 

similar to AT1R, AT2R is highly expressed in 

the heart and aorta tissue during fetal period and 

is expressed in liver, lung and kidney at lower 

volumes. However, its expression reduces 

intensely after birth. In the adulthood period, 

expression of this receptor increases again in the 

cardiovascular system under pathological 

conditions. Some studies demonstrated that 

AT2R antagonizes AT1R mediated effects, but 

there is still a big controversy on this subject [14]. 

For example, in a study by D D’Amore et al., 

AT2R activation caused hypertrophy in isolated 

cardiomyocytes and did not oppose AT1R 

induced hypertrophy [46]. However, in another 

study, deletion of AT2R exacerbated myocardial 

ischemia-induced heart failure in mice [47]. 

In our study, as indicated in figure 4, AT2R 

mRNA level increased by 1.63 fold in H16w 

group, which is statistically different from the Ctl 

group (p<0.001). This indicated re-induction of 

fetal gene expression during hypertrophy 

progression.  

Our data is in agreement with the results of the 

study by Kurabayashi et al. which showed that 

AT1R expression decreased in human failed 

heart despite AT2R density while AT2R mRNA 

level increased. It is possible that AT1R 

depletion in human failed heart is the result of 

Ang II elevation. This is while AT1R depletion 

was not observed in non-failed hypertrophied 

ventricle [48].  

Changes in the Ang II receptor expression level 
in heart tissue were examined in some animal 
models of hypertrophy and heart failure. Suzuki 
et al. showed that AT1R and AT2R density as 
well as AT1a mRNA level increased in SHR rats 
[46]. Elevation of AT1aR and AT2R mRNA 
level in infarcted and non-infarcted area of the 
left ventricle followed by coronary ligation in rats 
was also explained in [50]. However, AT1aR and 
AT2R mRNA level did not change in rats with 
left ventricular failure followed by aorto-caval 
shunt (an instance for volume overload induced 
heart failure) [51]. Different models of heart 
failure may be the main reason of the difference 

between the result of the mentioned study and 
that of ours. 
Our findings are also consistent with those 
obtained by Schultz et al. which showed that 
ascending aorta banding in dog for 9 months 
increased Ang concentration in left ventricular 
tissue, but decreased AT1R expression [52]. 
Based on these data, it can be concluded that 
when the heart is exposed to pressure overload 
cardiac AT1R density increases, but when the 
hemodynamic overload persists and cardiac 
hypertrophy progresses to failure stage it will 
decrease. In the late phase of hypertrophy cardiac 
level of Ang II increased dramatically therefore, 
it could be possible that there was a negative 
feedback loop between Ang II and At1R receptor.   
Given the importance of renin and angiotensin in 
local RAS in myocardial tissue, transcription 
level of these genes was also evaluated.  The 
results showed that angiotensinogen mRNA level 
increased by 1.56 fold in H16W (p<0.001 vs. Ctl), 
but angiotensinogen mRNA level increased by 
1.2 fold in H16w+R group which was treated 
with resveratrol. This shows a significant 
difference with non-treated rats in the H16w 
group (p<0.05). 
 As shown in figure 5, the transcription level of 

renin augmented by 1.7 fold in the H16w group 

which is significantly different from the Ctl 

(p<0.001). In the H16w+R group, the renin 

mRNA reached 1.27 fold, which shows a 

significant difference in comparison with the 

H16w group (p<0.05).  

There are lots of findings about renin expression 

and its important role in myocardial tissue. Some 

studies claim that renin expression is low in 

myocardial tissue and that its main portion is 

produced in kidneys provided by renin uptake 

from the circulation [39]. In heart failure patients 

under ACEI treatment, the renin level in 

circulation and heart tissue increased, indicating 

elevated renin uptake in these patients. At the 

same time, angiotensinogen concentration 

decreased in the heart tissue, suggesting 

significant increase in Ang production in failed 

heart [53]. Renin mRNA level was also increased 

in infarcted left ventricle of rats [54], so it is 

possible that pathological conditions may 

stimulate renin secretion in heart. 

Angiotensinogen expression is also very low in 

normal heart, but it may increase under 

pathological conditions. Our data have shown 

that angiotensinogen mRNA increased in the late 
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phase of hypertrophy while the increase was not 

significant in the early phase of LVH, suggesting 

that the progression of LVH was accompanied by 

overexpression of key components of local RAS 

in the cardiac tissue. 

 

 

 
 

Figure 5. Angiotensinogen and renin mRNA levels; cardiac 

transcriptional levels of angiotensinogen and renin were 

assessed in the left ventricular tissue of non-treated and 

resveratrol-treated (R) hypertrophied rats two and sixteen 

weeks after aortic banding (H2w and H16w). Intact animal 

served as control (Ctl). ***p<0.001 vs. Ctl 
 

In this study, we aimed to investigate the effects 

of resveratrol polyphenol on RAS component 

changes during myocardial hypertrophy 

progression. The findings showed that resveratrol 

inhibited abdominal aorta banding induced 

hypertension in rats and moderated the rise of 

HW/BW ratio. It was interesting that this anti-

hypertrophic effect was associated with RAS 

suppression in myocardial tissue as resveratrol 

could prevent tissue Ang II level elevation as 

well as renin and angiotensinogen mRNA 

upregulation in hypertrophied tissue. 

The results of our previous study showed that 

resveratrol suppressed AT1R upregulation in the 

early phase of hypertrophy [23]. However, this 

effect was not observed in the current study. It 

seems that the main cause of this inconsistency is 

the duration of resveratrol treatment: in our 

previous study, animals received drug from two 

weeks before hypertension induction until three 

weeks after surgery (five weeks), which shows a 

longer treatment duration than that of the present 

work.  

In the present study, longer periods of 

hypertrophy were also investigated and renin and 

angiotensinogen expression were further 

evaluated so that it can provide us with a more 

comprehensive view on the effects of resveratrol 

on RAS components in progression of 

hypertrophy. In a study by Ichiki et al., 

resveratrol suppressed Ang II-induced 

senescence of vascular smooth muscle cells 

through inhibition of AT1R [55]. It could be 

concluded that the impact of resveratrol on RAS 

component is not only mediated through its direct 

effect, but also, resveratrol might suppress RAS 

over-activation through inhibition of 

hypertension and hypertrophy. Even though 

resveratrol has no direct effect on RAS, 

considering the importance of RAS in 

pathogenesis of myocardial hypertrophy, its 

indirect effects can also be valuable. To find a 

more exact answer to the question that “how do 

RAS changes occur in response to resveratrol?”, 

schematizing more accurate in vitro and in vivo 

studies can help gathering more comprehensive 

results. 

A limitation of our study was that renin and ACE 

activities were not measured. It is, therefore, 

possible that Ang level have risen as a result of 

these enzymes over-activation. Although it is 

proved that RAS components are upregulated 

anyway, measuring the enzymes activity in 

further studies can present more accurate 

information. 

Based on the findings of the present study, it 

could be concluded that progression from 

compensated hypertrophy to decompensated 

phase is accompanied by dynamic changes in 

RAS component. As in the early phase of LVH, 

AT1aR transcription level was increased, while 

in the late phase Ang II and the elements 

involved in Ang II production, such as renin and 

angiotensinogen, were upregulated. Resveratrol 

decreased hypertrophy markers in both early and 

late phase and these protective effects are 

associated with suppression of RAS expression.    
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angiotensin system; LVH: left ventricular 

hypertrophy; Ang II: angiotensin II; AT1a: 

angiotensin II type 1 receptor; AT2R: angiotensin 

II type 2 receptor; ARB: angiotensin receptor 

blockers; ACE: angiotensin converting enzyme ; 

LKB1-AMP: liver kinase B1, one of the many 

upstream kinases of AMPK; eNOS: endothelial 

nitric oxide synthase; SERCA2: 

sarco/endoplasmic reticulum Ca2+-ATPase; 

MAPK: mitogen-activated protein kinase; HTN: 

hypertension; VSMC: vascular smooth muscle 
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