Hypertension in Africa and Medicinal Plants with Anti-Hypertensive Properties

Document Type : Review

Authors

1 Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa.

2 Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa.

Abstract

Hypertension presents a major threat to global health. The prevalence of the disease is high in the adult population but an increasing number of children are being diagnosed with raised blood pressure globally. Although pharmaceutical drugs are effective in the treatment of hypertension based on targeting blood pressure regulatory mechanisms, the use of these products has been associated with several side effects. As a result, there has been an increasing interest to find natural sources for treatment of hypertension. Several local plants in Africa have been used in folk medicine to treat hypertension. In this review, an extensive literature search in databases including ScienceDirect, PubMed, Scopus, Web of Science, and Google was performed to search plants with anti-hypertensive properties; the epidemiology of hypertension in Africa along with the mechanisms of regulation has been highlighted. The various classes of pharmaceutical drugs and medicinal plants used in treating hypertension in Africa with their anti-hypertensive properties were described. Several medicinal plants in Africa have been revealed with potential anti-hypertensive effects along with the phytochemical constituents and some potential mechanisms of action thus providing the scientific basis of their potential usefulness in hypertension treatment. However, further studies are needed for the exploration of these plants against hypertension.

Keywords

Main Subjects


  • Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. 2016; 134(6): 441–450.
  • Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D. International society of hypertension global hypertension practice guidelines. 2020; 75(6): 1334–1357.
  • Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ. Acc/aha/aapa/abc/acpm/ags/APhA/ASH/ASPC/nma/pcna guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association. Task force on clinical practice guidelines. J Am Coll Cardiol. 2018; 7(1): 1269–1324. 
  • Flynn J, Kaelber DC, Baker-Smith CM. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. 2017; Article ID e20171904.
  • Sookram C, Munodawafa D, Phori PM, Varenne B, Alisalad A. WHO’s supported interventions on salt intake reduction in the sub-Saharan Africa region. Cardiovasc Diagn Ther. 2015; Article ID 186.
  • Chopra S, Baby C, Jacob JJ. Neuro-endocrine regulation of blood pressure. Indian J Endocrinol Metab. 2011; Article ID S281.
  • Shrestha RK, Khan GM, Thapa P, Koju R. Study of the side effects profile of different antihypertensive drugs among the hypertensive patient. Nepalese Heart J. 2012; 9(1): 25–29.
  • Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev. 2011; 5(9): 30–40.
  • Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020; 15(4): 223–237.
  • World Health Organisation. 2019. World Health Organisation Geneva, Switzerland. [Accessed 2020]. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension.
  • Adeloye D, Basquill C. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS One. 2014; Article ID: e104300.
  • Noubiap JJ, Nansseu JR, Endomba FT, Ngouo A, Nkeck JR, Nyaga UF. Active smoking among people with diabetes mellitus or hypertension in Africa: a systematic review and meta-analysis. Sci Rep. 2019; 9(1): 1–11.
  • Akpa OM, Made F, Ojo A, Ovbiagele B, Adu D, Motala AA, Mayosi BM, Adebamowo SN, Engel ME, Tayo B, Rotimi C, Salako B, Akinyemi R, Gebregziabher M, Sarfo F, Wahab K, Agongo G, Alberts M, Ali SA, Asiki G, Boua RP, Gómez-Olivé FX, Mashinya F, Micklesfield L, Mohamed SF, Nonterah EA, Norris SA, Sorgho H, Tollman S, Parekh RS, Chishala C, Ekoru K, Waddy SP, Peprah E, Mensah GA, Wiley K, Troyer J, Ramsay M, Owolabi MO. Regional patterns and association between obesity and hypertension in Africa: evidence from the H3Africa CHAIR study. 2020; 75(5): 1167–1178.
  • Boujnah R, Nazek L, Maalej M, Achhab YE, Nejjari C. Hypertension in Tunisian adults attending primary care physicians (ETHNA-Tunisia). Indian Heart J.2018; 70(4): 544–547.
  • Achhab Y, Nazek L, Maalej M, Alami M, Nejjari C. Prevalence, control and risk factors related to hypertension among Moroccan adults: a multicentre study. East Mediterr Health J. 2019; 25(7): 447–456.
  • Gabal MS, Abd Elaziz KM, Mostafa NS, Khallaf MK. Prevalence of hypertension and quality of life among hypertensive patients in an Egyptian village. Egypt J Communit Med. 2018; 36(2): 23–35.
  • Zewde GT. Prevalence of hypertension and associated factors among bank workers in Harar Town, Eastern Ethiopia 2018. J Comm Med Pub Health Rep. 2020; 1(1): 1–
  • Pengpid S, Peltzer K. Prevalence, awareness, treatment and control of hypertension among adults in Kenya: cross-sectional national population-based survey. East Mediterr Health J. 2020; 25(2): 265–273.
  • Lunyera J, Kirenga B, Stanifer JW, Kasozi S, van der Molen T, Katagira W. Geographic differences in the prevalence of hypertension in Uganda: results of a national epidemiological study. PLoS One. 2018; Article ID e0201001.
  • Adeloye D, Owolabi EO, Ojji DB, Auta A, Dewan MT, Olanrewaju TO, Ogah OS, Omoyele C, Ezeigwe N, Mpazanje RG, Gadanya MA, Agogo E, Alemu W, Adebiyi AO, Harhay MO. Prevalence, awareness, treatment, and control of hypertension in Nigeria in 1995 and 2020: a systematic analysis of current evidence. J Clin Hypertens. 2021; 23(5): 963–977.
  • Odili AN, Chori BS, Danladi B, Nwakile PC, Okoye IC, Abdullahi U, Nwegbu MN, Zawaya K, Essien I, Sada K, Ogedengbe JO, Aje A, Isiguzo GC. Prevalence, awareness, treatment and control of hypertension in Nigeria: data from a nationwide survey 2017. Glob Heart. 2020; 15(1): 1–13.
  • Kuate DB, Mbanya JC, Kingue S, Tardif JC, Choukem SP, Perreault S, Fournier P, Ekundayo O, Potvin L, D’Antono B, Emami E, Cote R, Aubin MJ, Bouchard M, Khairy P, Rey E, Richard L, Zarowsky C, Mampuya WM, Mbanya D, Sauvé S, Ndom P, Silva RB, Assah F, Roy I, Dubois CA. Blood pressure and burden of hypertension in Cameroon, a microcosm of Africa. J Hypertens. 2019; 37(11): 2190–2199.
  • Arrey WT, Dimala CA, Atashili J, Mbuagbaw J, Monekosso GL. Hypertension, an emerging problem in Rural Cameroon: prevalence, risk factors, and control. Int J Hypertens. 2016; Article ID 5639146.
  • Katchunga PB, Mirindi P, Baleke A, Ntaburhe T, Twagirumukiza M, M’buyamba-Kabangu JR. The trend in blood pressure and hypertension prevalence in the general population of South Kivu between 2012 and 2016: results from two representative cross-sectional surveys- the Bukavu observational study. PLoS One. 2019; Article ID e0219377.
  • Blankson PK, Kwamin F, Asibey AB. Screening at the dental office: an opportunity for bridging the gap in the early diagnosis of hypertension and diabetes in Ghana. Ann Afr Med. 2020; Article ID 40.
  • Jessen N, Damasceno A, Silva-Matos C, Tuzine E, Madede T, Mahoque R. Hypertension in Mozambique: trends between 2005 and 2015. J Hypertens. 2018; 36(4): 779–784.
  • Mutowo MP, Mangwiro JC, Lorgelly P, Owen A, Renzaho AM. Hypertension in Zimbabwe: a meta-analysis to quantify its burden and policy implications. World J Meta-Anal.2015; 3(1): 54–60.
  • Woodiwiss AJ, Gafane-Matemane LF, Norton GR, Uys L, Myburgh C, Nkeh-Chungag BN, Kruger L, Orchard A, Peterson VR, Kolkenbeck-Ruh A, Ahiante BO, Phalane E, Beaney T, Xia X, Poulter NR. May measurement month 2019: an analysis of blood pressure screening results from South Africa. Eur Heart J Suppl. 2021; 23: 134–137.
  • Monakali S, Goon DT, Seekoe E, Owolabi EO. Prevalence, awareness, control and determinants of hypertension among primary health care professional nurses in Eastern Cape, South Africa. Afr J Prim Health Care Fam Med.2018; 10(1): 1–5.
  • Matjuda EN, Engwa GA, Letswalo PB, Mungamba MM, Sewani-Rusike CR, Nkeh-Chungag BN. Association of hypertension and obesity with risk factors of cardiovascular diseases in children aged 6–9 years old in the Eastern Cape province of South Africa.  2020; 7(4): 1–10.
  • Bhimma R, Naicker E, Gounden V, Nandlal L, Connolly C, Hariparshad S. Prevalence of primary hypertension and risk factors in grade XII learners in KwaZulu-Natal, South Africa. Int J Hypertens.2018; Article ID 3848591.
  • Guyenet The sympathetic control of blood pressure. Nat Rev Neurosci. 2006; 7(4): 335–346.
  • Lowry M, Windsor J, Ashelford S. Orthostatic hypotension 2: the physiology of blood pressure regulation. Nurs Times. 2016; 112(43/44): 17–29.
  • Ashton N. Neurological and humoral control of blood pressure. Anaesth Intens Care Med. 2007; 8(6): 221–226.
  • Yang T, Xu Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017; 28(4): 1040–1049.
  • Aoyagi T, Koshimizu TA, Tanoue A. Vasopressin regulation of blood pressure and volume: findings from V1a receptor–deficient mice. Kidney Int. 2009; 76(10): 1035–1039.
  • Johnson RJ, Rodriguez-Iturbe B, Roncal-Jimenez C, Lanaspa MA, Ishimoto T, Nakagawa T, Correa-Rotter R, Wesseling C, Bankir L, Sanchez-Lozada LG. Hyperosmolarity drives hypertension and CKD-water and salt revisited. Nat Rev Nephrol. 2014; 10(7): 415–420.
  • Patel PA, Noman Mechanisms involved in regulation of systemic blood pressure. Arch Clin Hypertens. 2017; 3(1): 16–20.
  • Laurent S. Antihypertensive drugs. Pharmacol Res. 2017; 124: 116–125.
  • Mann SJ. Redefining beta-blocker use in hypertension: selecting the right beta-blocker and the right patient. J Am Soc Hypertens.2017; 11(1): 54–65.
  • Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Opie LH. Beta‐blockers for hypertension.Cochrane Database Syst Rev. 2017; Article ID CD002003.
  • Roush GC, Sica DA. Diuretics for hypertension: a review and update. Am J Hypertens. 2016; 29(10): 1130–1137.
  • Burnier M, Bakris G, Williams B. Redefining diuretics use in hypertension: why select a thiazide-like diuretic? J Hypertens. 2019; 37(8): 1574-1586.
  • Mishra S. Diuretics in primary hypertension–reloaded. Indian Heart J. 2016; 68(5): 720–723.
  • Goyal A, Cusick AS, Thielemier B. ACE Inhibitors. In: StatPearls (Internet). Treasure Island: StatPearls Publishing,
  • Flaten HK, Monte AA. The pharmacogenomic and metabolomic predictors of ACE inhibitor and angiotensin II receptor blocker effectiveness and safety. Cardiovasc Drugs Ther. 2017; 31(4): 471–482.
  • Omboni S, Volpe M. Management of arterial hypertension with angiotensin receptor blockers: current evidence and the role of olmesartan. Cardiovasc 2018; Article ID e12471.
  • Dézsi CA. The different therapeutic choices with ARBs. Which one to give? When? Why? Am J Cardiovasc Drugs. 2016; 16(4): 255–266.
  • Volpe M. Calcium channel blockers for the clinical management of hypertension. Blood Press Cardiovasc Prev. 2018; 25(1): 1–3
  • Tocci G, Desideri G, Roca E, Calcullo C, Crippa M, De Luca N. How to improve effectiveness and adherence to antihypertensive drug therapy: central role of dihydropyridinic calcium channel blockers in hypertension. High Blood Press Cardiovasc Prev.2018; 25(1): 25–34.
  • Hiremath S, Ruzicka M, Petrcich W, McCallum MK, Hundemer GL, Tanuseputro P. Alpha-blocker use and the risk of hypotension and hypotension-related clinical events in women of advanced age.  2019; 74(3): 645–651.
  • Nachawati D, Patel J. Alpha blockers. In: StatPearls (Internet). Treasure Island: StatPearls Publishing,
  • Hardeman JH. Hypertension and the dental patient. Dent Today. 2017; 36(1): 126–138.
  • Shamon SD, Perez MI. Blood pressure‐lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst Rev. 2016; Article ID CD007655.
  • Hariri L, Patel J. Vasodilators. In: StatPearls (Internet). Treasure Island: StatPearls Publishing,
  • World Health Organization. A global brief on hypertension: silent killer, global public health crisis. World health day. Geneva: World Health Organization,
  • Ayinde BA, Omogbai EK, Amaechina FC. Pharmacognosy and hypotensive evaluation of Ficus exasperata (Moraceae) leaf. Acta Pol Pharm.2007; 64(6): 543–556.
  • Legbosi NL, Ellis TR. Sub-chronic toxicity of hydromethanolic stem bark extract of Musanga cecropioides (Urticaceae) in rat. EC Pharmacol Toxicol.2018; 6(3): 76–95.
  • Amel B. Traditional treatment of high blood pressure and diabetes in Souk Ahras District. J Pharmacogn Phytother. 2013: 5(1): 12–20.
  • Mensah JK, Okoli RI, Ohaju-Obodo JO, Eifediyi K. Phytochemical, nutritional and medical properties of some leafy vegetables consumed by Edo people of Nigeria. Afr J Biotechnol. 2008; 7(14): 2302–2309.
  • De Wet H, Ramulondi M, Ngcobo ZN. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. S Afr J Bot. 2016; 103: 78–88.
  • Olorunnisola OS, Bradley G, Afolayan AJ. Antioxidant properties and cytotoxicity evaluation of methanolic extract of dried and fresh rhizomes of Tulbaghia violacea. Afr J Pharm Pharmacol. 2011; 5(22): 2490–2497.
  • Moagi LE, Schutte PJ, Steinmann CML. Cardiovascular effects of dietes iridioides in spontaneous hypertensive rats (SHR). Doctoral dissertation. University of Limpopo (Medunsa Campus), South Africa, 2013. 
  • Duncan AC, Jäger AK, van Staden J. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J Ethnopharmacol. 1999; 68(1–3): 63–70.
  • De Lange-Jacobs P, Shaikh-Kader A, Thomas B, Nyakudya TT. An overview of the potential use of ethno-medicinal plants targeting the renin-angiotensin system in the treatment of hypertension. 2020; 25(9): 1–15.
  • Odunayo MA, Ganiyu O. Effect of different processing methods on antihypertensive property and antioxidant activity of sandpaper leaf (Ficus exasperata) extracts. J Dietary Suppl. 2018; 15(6): 871–883.
  • Adewole SO, Adenowo T, Naicker T, Ojewole JA. Hypoglycaemic and hypotensive effects of Ficus exasperata (Moraceae) leaf aqueous extract in rats. Afr J Tradit Complement Altern Med. 2011; 8(3): 275–283.
  • Mugabo P, Raji IA. Effects of aqueous leaf extract of Asystasia gangetica on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. BMC Complement Altern Med. 2013; 13(1): 1–7.
  • Hanafi NF. The extraction of Asystasia gangetica using ethyl lactate solvent. Doctoral dissertation. Universiti Malaysia Pahang, Malasia, 2015. 
  • Ramesar S, Baijnath H, Govender T, Mackraj I. Angiotensin I-converting enzyme inhibitor activity of nutritive plants in KwaZulu-Natal. J Med Food. 2008; 11(2): 331–336.
  • Pavela R, Govindarajan M. The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci. 2017; 90(1): 369–378.
  • Lechaba NMT, Schutte PJ, Hay L, Böhmer L, Govender MM. The effects of an aqueous leaf extract of Clausena anisata (Willd.) Hook. f. ex Benth. on blood pressure, urine output, angiotensin II levels and cardiac parameters in spontaneously hypertensive rats. J Med Plants Res. 2016; 10(28): 425–434.
  • Lawal IO, Galadima M, Ogunbamowo PO. Isolation of bioactive compounds of Clausena anisata (Willd.) Hook. growing in South Africa by liquid chromatography–mass spectroscopy profiling, and their antibacterial activities. J Med Plant Econ Dev. 2018; 2(1): 1–10.
  • Raji IA, Mugabo P, Obikeze K. Effect of Tulbaghia violacea on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. J Ethnopharmacol. 2012; 140(1): 98–106.
  • Moodley K, Joseph K, Naidoo Y. Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern Med. 2015; 15(1): 1–13.
  • Raji I, Mugabo P, Obikeze K. The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea. BMC Complement Altern Med. 2013; 13(1): 1–12.
  • Yadav M, Gulkari VD, Wanjari MM. Bryophyllum pinnatum leaf extracts prevent formation of renal calculi in lithiatic rats. Anc Sci Life. 2016; 36(2): 90–97.
  • Ghasi S, Egwuibe C, Achukwu PU, Onyeanusi JC. Assessment of the medical benefit in the folkloric use of Bryophyllum Pinnatum leaf among the Igbos of Nigeria for the treatment of hypertension. Afr J Pharm Pharmacol. 2009; 5(1): 83–92.
  • Ojewole JAO. Antihypertensive properties of Bryophyllum pinnatum (Lam) Oken leaf extracts. Am J Hypertens. 2002; 15(4A): 34–34.
  • Bopda OSM. Kalanchoe pinnata aqueous extract as a potential phytomedicine candidate for the management of hypertension and acute myocardial infarction. Ann Hypertens. 2019; Article ID 1009.
  • Nazaruk J, Orlikowski P. Phytochemical profile and therapeutic potential of Viscum album Nat Prod Res. 2016; 30(4): 373–385.
  • Ofem OE, Eno AE, Imoru J, Nkanu E, Unoh F, Ibu JO. Effect of crude aqueous leaf extract of Viscum album (mistletoe) in hypertensive rats. Indian J Pharmacol. 2007; 39(1): 15–19.
  • Khan T, Ali S, Qayyum R, Hussain I, Wahid F, Shah AJ. Intestinal and vascular smooth muscle relaxant effect of Viscum album explains its medicinal use in hyperactive gut disorders and hypertension. BMC Complement Altern Med. 2016; 16: 1–8.
  • Sowemimo A, Okwuchuku E, Samuel FM, Ayoola O, Mutiat I. Musanga cecropioides leaf extract exhibits anti-inflammatory and anti-nociceptive activities in animal models. Rev Bras Farmacogn. 2015; 25: 506–512.
  • Adeneye AA, Ajagbonna OP, Adeleke TI, Bello SO. Preliminary toxicity and phytochemical studies of the stem bark aqueous extract of Musanga cecropioides in rats. J Ethnopharmacol. 2006; 105(3): 374–379.
  • Adeneye AA, Ajagbonna OP, Mojiminiyi FBO, Odigie IP, Ojobor PD, Etarrh RR. The hypotensive mechanisms for the aqueous stem bark extract of Musanga cecropioides in Sprague-Dawley rats. J Ethnopharmacol. 2006; 106(2): 203–207.
  • Okokon JE, Bawo MB, Mbagwu HO. Hepatoprotective activity of Mammea africana ethanol stem bark extract. Avicenna J Phytomed. 2016; 6(2): 248–259.
  • Canning C, Sun S, Ji X, Gupta S, Zhou K. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africanaJ Ethnopharmacol. 2013; 147(1): 259–262.
  • Nguelefack-Mbuyo PE, Nguelefack TB, Dongmo AB, Afkir S, Azebaze AGB, Dimo T, Legssyer A, Kamanyi A, Ziyyat A. Anti-hypertensive effects of the methanol/methylene chloride stem bark extract of Mammea africana in L-NAME-induced hypertensive rats. J Ethnopharmacol. 2008; 117(3): 446–450.
  • Nguelefack-Mbuyo EP, Dongmo AB, Nguelefack TB, Kamanyi A, Kamtchouing P, Dimo T. Endothelium/nitric oxide mediates the vasorelaxant and antihypertensive effects of the aqueous extract from the stem bark of Mammea africana Sabine (Guttiferae). Evid-Based Complement Altern Med. 2012; Article ID 961741.
  • Dongmo AB, Azebaze AG, Nguelefack TB, Ouahouo BM, Sontia B, Meyer M, Nkengfack AE, Kamanyi A, Vierling W. Vasodilator effect of the extracts and some coumarins from the stem bark of Mammea africana (Guttiferae). J Ethnopharmacol. 2007; 111(2): 329–334.
  • Nyadjeu P, Nguelefack-Mbuyo EP, Atsamo AD, Nguelefack TB, Dongmo AB, Kamanyi A. Acute and chronic antihypertensive effects of Cinnamomum zeylanicum stem bark methanol extract in L-NAME-induced hypertensive rats. BMC Complement Altern Med. 2013; 13(1): 1–10.
  • Ranasinghe P, Galappaththy P, Constantine GR, Jayawardena R, Weeratunga HD, Premakumara S, Katulanda P. Cinnamomum zeylanicum (Ceylon cinnamon) as a potential pharmaceutical agent for type-2 diabetes mellitus: study protocol for a randomized controlled trial. 2017; 18(1): 1–8.
  • Nyadjeu P, Dongmo A, Nguelefack TB, Kamanyi A. Antihypertensive and vasorelaxant effects of Cinnamomum zeylanicum stem bark aqueous extract in rats. J Complement Integr Med. 2011; 8(1): 1–18.
  • N'dri FKK, Nene-Bi SA, Zahoui OS, Traore F. Phytochemical and toxicological studies of an extract of the seeds of Picralima nitida (Stapf)(Apocynaceae) and its pharmacological effects on the blood pressure of rabbit. J Biol Life Sci. 2015; 6(1): 116–
  • Solomon IP, Ekandem GJ, SA O, EA O. Chronic oral consumption of ethanolic extract of Picralima nitida (Akuamma) seed induced histopathological changes on the testes of adult wistar rats. Int J Pharm Res Allied Sci. 2014; 3(4): 71–77.
  • Ndukwu MC, Bennamoun L, Anozie O. Evolution of thermo-physical properties of Akuama (Picralima nitida) seed and antioxidants retention capacity during hot air drying. Heat Mass Transf.2018; 54(12): 3533–3546.
  • Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci.2017; 18(12): 1–25.
  • Jandari S, Ghavami A, Ziaei R, Nattagh-Eshtivani E, Kelishadi MR, Sharifi S, Khorvash F, Pahlavani N, Mohammadi H. Effects of Momordica charantia on blood pressure: a systematic review and meta- analysis of randomized clinical trials. Int J Food Prop. 2020; 23(1); 1913–1924.
  • Ojewole JA, Olayiwola G, Adewole SO. Hypoglycaemic and hypotensive effects of Momordica charantia (Cucurbitaceae) whole-plant aqueous extract in rats: cardiovascular topics. Cardiovasc J S Afr. 2006; 17(5): 227–232.
  • Zeng L, Chen M, Ahmad H, Zheng X, Ouyang Y, Yang P, Yang Z, Gao D, Tian Z. Momordica charantia extract confers protection against hypertension in dahl salt-sensitive rats. Plant Foods Hum Nutr. 2022; 77(3): 373–
  • Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN. Antihypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med. 2019; 19(1): 1–10.
  • Tata CM, Ndinteh D, Nkeh-Chungag BN, Oyedeji OO, Sewani-Rusike CR. Fractionation and bioassay-guided isolation of antihypertensive components of Senecio serratuloidesCogent Med.2020; Article ID 1716447.  
  • Aremu OO, Oyedeji AO, Oyedeji OO, Nkeh-Chungag BN, Rusike CRS. In vitro and in vivo antioxidant properties of Taraxacum officinale in Nω-nitro-l-arginine methyl ester (L-NAME)-induced hypertensive rats.  2019; 8(8): 1–12.
  • Gerbino A, Russo D, Colella M, Procino G, Svelto M, Milella L, Carmosino M. Dandelion root extract induces intracellular Ca2+ increases in HEK293 cells. Int J Mol Sci. 2018; 19(4): 1–17.
  • Aremu OO, Tata CM, Sewani-Rusike CR, Oyedeji AO, Oyedeji OO, Gwebu ET, Nkeh-Chungag BN. Acute and sub-chronic antihypertensive properties of Taraxacum officinale leaf (TOL) and root (TOR). Trans R Soc S Afr. 2019; 74(2): 132–138.
  • Ntchapda F, Bonabe C, Atsamo AD, Kemeta Azambou DR, Bekono Fouda Y, Imar Djibrine S. Effect of aqueous extract of Adansonia digitata stem bark on the development of hypertension in L-NAME-induced hypertensive rat model. Evid-Based Complement Altern Med. 2020; Article ID 3678469.
  • Alhassan AJ, Muhammad IU, Jarumi IK, Wudil AM. Evaluation of anti-hyperlipidemic potentials of aqueous fruit pulp extract of Adensonia digitata in experimental rats. Eur Sci J. 2016; 12(12): 298–308.
  • Liman AA, Salihu A, Onyike E. Effect of methanol extract of baobab (Adansonia digitata) fruit pulp on NG-Nitro-L-arginine methyl ester (L-NAME) induced hypertension in rats. High Blood Press Cardiovasc Prev. 2021; 28(3): 291–300.
  • Ediale JR, Abi I, Olasupo SA. Effect of n-hexane extract of baobab (Adansonia digitata) fruit on biochemical parameters of l-ng-nitro arginine methyl ester induced hypertension in rats. J Med Plant Res. 2021; 15(9): 423–430.
  • Tata CM, Sewani-Rusike CR, Aremu O, Oyedeji OO, Nkeh-Chungag BN. Antihypertensive effects of Osteospermum imbricatum in two hypertensive rat models. Pharmacogn J. 2021; 13(3): 744–751.
  • Tata CM, Gwebu ET, Aremu OO, Nkeh-Chungag BN, Oyedeji AO, Oyedeji OO. Acute toxicity study and prevention of Nω-nitro-L-arginine methyl ester-induced hypertension by Osteospermum imbricatum. Trop J Pharm Res. 2018; 17(6): 1111–1118.
  • Ojewole JA. Vasorelaxant and hypotensive effects of Sclerocarya birrea (A Rich) Hochst (Anacardiaceae) stem bark aqueous extract in rats: cardiovascular topic. Cardiovasc J South Afr. 2006; 17(3): 117–123.
  • Gondwe M, Kamadyaapa D, Tufts M, Chuturgoon A, Musabayane C. sclerocarya birrea [(A. Rich.) Hochst.][Anacardiaceae] stem-bark ethanolic extract (SBE) modulates blood glucose, glomerular filtration rate (GFR) and mean arterial blood pressure (MAP) of STZ-induced diabetic rats. 2008; 15(9): 699–709.
  • Sewani‑Rusike CR, Ntongazana O, Engwa GA, Musarurwa HT, Nkeh‑Chungag BN. Sclerocarya birrea fruit peel ameliorates diet‑induced obesity and selected parameters of metabolic syndrome in female wistar rats. Phcog Mag. 2021; 17(75): 482–491.