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Abstract 
Background and objectives: Coffee as a common drink for many people has been evaluated in the 

preset study due to its relationship with cancer risk or prevention, regulation of cholesterol level, and 

anti-oxidant properties. The dysregulated genes in liver of high-fat dieted mice which were treated 

with coffee were evaluated via network analysis to explore molecular mechanism of the event. 

Methods: Data were downloaded from gene expression omnibus (GEO) and the significant 

differentially expressed genes (DEGs) were analyzed via protein-protein interaction (PPI) network 

analysis by Cytoscape V.3.7.2. The Selected DEGs were enriched via gene ontology by ClueGO. 

Results of PPI network analysis and gene ontology enrichment were interpreted together to find the 

critical genes and pathways. Results: Hmgcr, Hmgcs1, Msmo1, Nsdhl, Lss, Fdps, Idi1, Mvd, Ppara, 

and Hsp90aa1 were identified as the central targeted genes while “cholesterol metabolism pathway” 

was introduced as the main affected pathway. Conclusion: Final analysis led to determine Hmgcr, 

Hmgcs1, Msmo1, Nsdhl, Lss, Fdps, Idi1, and Mvd as key dysregulated genes which are related to the 

most biological terms of “cholesterol metabolism pathway”.     
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Introduction 
It is reported that usual coffee consumption is 

accompanied with reduced risk of several 

diseases such as cancer. Caffeine, caffeic acid, 

and polyphenols are the compounds of coffee that 

play useful role in reduced risk of various types 

of cancers [1]. It is pointed that coffee 

consumption affects regulation of serum lipid 

profile [2]. Caffeine is evaluated as an effective 

factor which influences cholesterol metabolism 

via several proposed mechanisms [3,4]. 

Understanding the molecular mechanism of 

biological events has attracted attention of 

scientists in all fields of medicine, biology, and 

nutrition. Today genomics, proteomics, and 

bioinformatics are well-known methods to detect 

molecular mechanism of biological events. 

Combination of bioinformatics with the other 

omics methods has opened a new gate to explore 

details of molecular aspects of diseases and other 

induced conditions in human body [5-7].  

Protein-protein interaction (PPI) network analysis 

is a method to screen large number of proteins or 
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genes to identify the more important individuals 

among the queried ones. A network forms from 

nodes and their connections which are known as 

edges. Each element of the network has its 

properties thus it plays a different role relative to 

the other nodes in integrity of the network. The 

central nodes such as hubs and bottlenecks are 

the crucial nodes of the network and they may 

induce the main effects of network in the studied 

condition [8-10].  

PPI network analysis as a useful tool is used to 

analyze many diseases and also has introduced 

many drug targets. Anticancer, anti-inflammatory, 

and anti-oxidative properties of several herbal 

compounds have been investigated via PPI 

network analysis. Effective role of cinnamon 

extract on ribosome function, evaluation of ghost 

pepper anticancer effect, and anti-stress effect of 

saffron are investigations that have been 

administrated via PPI network analysis [11-13]. 

Another well-known method to analyze 

molecular mechanism is gene ontology. 

Molecular function, biological processes, and 

biochemical pathways related to the studied 

genes provide valuable information about 

biological events [14]. In the present study, the 

top 250 dysregulated genes in the liver of high-

fat dieted mice which were treated with coffee 

relative to the liver of high-fat dieted mice were 

downloaded from GEO. The significant DEGs 

were identified and evaluated via PPI network 

analysis and gene ontology. The critical DEGs 

and the important related pathway were 

determined.    

 

Material and Methods 
Ethical considerations 

This project was approved by  Shahid Beheshti 

University of Medical Sciences 

(IR.SBMU.RETECH.REC.1401.002). 

 
Data collection 

GSM1282827-9 related to the gene expression 

profiles of the liver of mice that were fed with a 

high-fat diet and GSM1282830-2 associated to 

the gene expression profiles of the liver of mice 

that were fed with a high-fat diet containing 2% 

coffee from GSE53131were downloaded from 

GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

?acc=gse53131). Data were analyzed by GEO2R    

and the significant DEGs based on, p-

value<0.001 and fold change >1.5 were 

determined. The DEGs with higher values of FC 

were selected among the repetitive DEGs. To 

evaluate the gene expression profiles “expression 

density” plot was illustrated.  

The significant DEGs were evaluated via PPI 

network analysis by Cytoscape software [15]. 

The queried DEGs were included in STRING 

database from “protein query” option of STRING 

by Cytoscape software. The network was 

constructed and for making more connections 

between nodes of the network, suitable numbers 

of first neighbors from STRING were added to 

the queried DEGs and the network was 

reconstructed. The queried DEGs of main 

connected component of the reconstructed 

network were considered for more analysis.  

The final candidate elements of the main 

connected component were included in ClueGO 

[16] application of Cytoscape to find the related 

biological terms. ClueGO setting was as: all 

sources of; ontologies/pathways, evidence; all, 

network specificity; medium, and p≤0.05. The 

biological terms were grouped based; Term p-

value, term p-value corrected with Bonferroni 

step down, group p-value, and group p-value 

corrected with Bonferroni step down are less than 

0.01. The important group of biological terms 

based on numbers of terms and the related genes 

was introduced. 

The reconstructed PPI network was analyzed by 

“Network Analyzer” application of Cytoscape 

and 10 top nodes based on degree value were 

selected as hubs. The hubs and the related DEGs 

to the important group of biological terms were 

analyzed and screened to find the crucial 

dysregulated genes. 

 

Results and Discussion 
Numbers of 96 significant DEGs were identified 

among the 250 top dysregulated genes that were 

analyzed by GEO2R. Expression density plot for 

the six studied GSMs is presented in Figure 1.  

The six curves follow a similar pattern and are 

comparable. Maximum FC (-2.822) belonged to 

complement factor D (adipsin) (CFD) which was 

down-regulated. Among the 96 queried DEGs, 82 

individuals were recognized by STRING 

database.  

As it is shown in Figure 2, 32 nodes remained as 

isolated and three paired nodes appeared. Figure 

2 is presented to show the isolation of 

considerable numbers of the queried genes and 

illustration of poor interactions between the 
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nodes of network. The main connected 

component of network included 44 nodes. The 

network was reconstructed after adding 50 first 

neighbors from STRING database (Figure 3). 

Ten isolated nodes and one paired DEGs were 

reduced; therefore, 22 isolated nodes and 2 paired 

individuals appeared.  

 

 

 

 
 

Figure 1. Expression density plot of six studied; the plotted curves follow a similar pattern 

  

 

 
 
Figure 2. PPI network including 82 recognized queried DEGs that discriminate liver of mice with high-fat diet from liver of mice 

with high-fat diet containing 2% coffee 
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Figure 3. Reconstructed PPI network including 82 recognized queried DEGs plus 50 added first neighbors; to increase resolution 

of nodes of queried DEGs the added individuals are concentrated in the center of network 
 

The main connected component including 106 

nodes (56 queried DEGs and 50 added first 

neighbors) which were connected by 974 

connections were formed. The 11 nodes which 

were characterized with degree value = 1 were 

considered as non- critical elements of the main 

connected component of the reconstructed 

network and were excluded from more 

investigations. The remained 45 DEGs were 

assessed via ClueGO which led to introducing 6 

groups of biological terms (Figure 4). List of the 

biological terms of the important pathway 

(cholesterol metabolism pathway) and the related 

data is presented in Table 1. Seventy queried 

DEGs among the remained 45 DEGs were related 

to the biological terms of “cholesterol 

metabolism pathway” (Figure 5). 

Top 10 nodes among the 56 queried DEGs from 

the main connected component of the 

reconstructed network based on degree value 

were selected as hubs. The hubs including Hmgcr, 

Hmgcs1, Msmo1, Nsdhl, Lss, Fdps, Idi1, Mvd, 

Ppara, and Hsp90aa1 are tabulated in the Table 2. 

PPI network analysis as a useful method is 

applied to analyze and detect molecular 

mechanism of herbal medicine in pharmacognosy 

[17]. As it is shown in Figure 1, gene expression 

profiles of the studied samples are comparable. 

PPI network analysis revealed the queried DEGs 

were connected to each other poorly; however, 

adding first neighbors led to formation of a 

suitable network for analysis (Figures 2-3). 

As it is depicted in Figure 4, 6 groups of 

biological terms are related to the queried nodes 

of the main connected component. The main 

group is “cholesterol metabolism pathway” 

which includes 41 biological terms (Figure 4 and 

Table 1). As it is reported in literature 

“cholesterol metabolism pathway” is an 

important pathway that is related to a set of 

diseases [18]. Association between dysregulation 

of cholesterol metabolism and nonalcoholic fatty 

liver disease (NAFLD) which is tied to disease 

severity and cardiovascular risks has been 

investigated by Min HK et al. [19]. Rezaei 

Tavirani et al. published data about contradictory 

effect of coffee consumption related to NAFLD) 

[20]. 
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Figure 4. Six groups of biological terms which are related to the remained 45 DEGs of the main connected component; term p 

value, term p value corrected with Bonferroni step down, group p value, and group p value corrected with Bonferroni step down 

were less than 0.01 

 

 
 

Figure 5. The queried DEGs Among the remained 45 DEGs which were related to biological terms of “cholesterol metabolism 

pathway” are presented. Red line is the trend line and the blue bars are not supported by this line. The blue bars with margined 

red lines are the DEGs that are common with hubs and supported by trend line, the bars with margined yellow lines are not hubs. 
 

Among the 45 enriched DEGs, 17 genes were 

related to the “cholesterol metabolism pathway” 

(Table 1). It can be concluded that 17 DEGs 

among the queried genes played crucial role. 

Other finding indicated that 10 central nodes 

appeared as key dysregulated genes (Table 2). A 

simple comparison between Figure 5 and Table 2 

indicated that except for Hsp90aa1 and Ppara, the 

other 8 hub nodes were common with the DEGs 

which were related to “cholesterol metabolism 

pathway” and are supported by the related trend 

line. Hsp90aa1 is the 10
th
 hub that was ranked in 

the Table 2. Ppara is the other hub that was not 

supported by trend line in Figure 5; consequently, 

it was excluded from more investigations. Finally, 

eight genes including Hmgcr, Hmgcs1, Msmo1, 

Nsdhl, Lss, Fdps, Idi1, and Mvd were identified 

as the critical DEGs.  

3-Hydroxy-3-Methylglutaryl-CoA Synthase 

1(Hmgcs1) is the second top hub node which is 

related to 23 (the maximum numbers) of the 

biological terms. Cytoplasmic Hmgcs1 and 

mitochondrial Hmgcs2 are two subtypes of 

Hmgcs. Hmgcs1 plays a key role in cholesterol 

metabolism [21]. 
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Table 1. List of biological terms of “cholesterol metabolism pathway” that are related to the 45 elements of the main connected 

component of the reconstructed network.  

Gene ontology term Associated genes found 

Intramolecular oxidoreductase activity [Creld2, Idi1, Pdia4] 

Protein destabilization [Cul3, Gsn, Rad23a] 

Response to topologically incorrect protein [Bag3, Cul3, Eif2ak3, Hsp90aa1, Hspa4l, Sdf2l1] 

Regulation of DNA-templated transcription in response to stress [Bag3, Cited2, Eif2ak3] 

Regulation of transcription from RNA polymerase II promoter in 

response to stress 
[Bag3, Cited2, Eif2ak3] 

Musculoskeletal movement [Atp2a2, Dmd, Hsp90aa1] 

Cellular response to heat [Atp2a2, Bag3, Hsp90aa1] 

Skeletal muscle contraction [Atp2a2, Dmd, Hsp90aa1] 

Striated muscle cell apoptotic process [Bag3, Hmgcr, Hsp90aa1] 

Fatty acid degradation [Acsl3, Acsl4, Aldh2] 

Steroid biosynthesis [Lss, Msmo1, Nsdhl] 

Terpenoid backbone biosynthesis [Fdps, Hmgcr, Hmgcs1, Idi1, Mvd] 

PPAR signaling pathway [Acsl3, Acsl4, Hmgcs1, Ppara, Sorbs1] 

Adipocytokine signaling pathway [Acsl3, Acsl4, Ppara] 

Cholesterol biosynthesis [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl] 

Metabolism of steroids 
[Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl, 

Stard4] 

Cholesterol Biosynthesis [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl] 

PPAR signaling pathway [Acsl3, Acsl4, Ppara, Sorbs1] 

Cholesterol metabolism (includes both Bloch and Kandutsch-Russell 

pathways) 

[Acsl3, Acsl4, Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, 

Mvd, Nsdhl] 

Thioester metabolic process [Acsl3, Acsl4, Hmgcs1, Mvd] 

Microbody [Acsl3, Acsl4, Fdps, Hmgcr, Idi1, Mvd, Pex11a] 

Lipid droplet [Acsl3, Acsl4, Cidec, Lss, Nsdhl] 

Isoprenoid metabolic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Rdh11] 

Sterol metabolic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl] 

Alcohol biosynthetic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Nsdhl] 

Secondary alcohol metabolic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Nsdhl] 

Peroxisome [Acsl3, Acsl4, Fdps, Hmgcr, Idi1, Mvd, Pex11a] 

Steroid biosynthetic process 
[Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl, 

Stard4] 

Isoprenoid biosynthetic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd] 

Microbody membrane [Acsl3, Acsl4, Hmgcr, Pex11a] 

Terpenoid metabolic process [Fdps, Hmgcs1, Lss, Rdh11] 

Cholesterol metabolic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Nsdhl] 

Sterol biosynthetic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Msmo1, Mvd, Nsdhl] 

Secondary alcohol biosynthetic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Nsdhl] 

Peroxisomal membrane [Acsl3, Acsl4, Hmgcr, Pex11a] 

Terpenoid biosynthetic process [Fdps, Hmgcs1, Lss] 

Nucleoside bisphosphate metabolic process [Acsl3, Acsl4, Hmgcr, Hmgcs1, Mvd] 

Cholesterol biosynthetic process [Fdps, Hmgcr, Hmgcs1, Idi1, Lss, Mvd, Nsdhl] 

Purine nucleoside bisphosphate metabolic process [Acsl3, Acsl4, Hmgcr, Hmgcs1, Mvd] 

Acyl-CoA metabolic process [Acsl3, Acsl4, Hmgcs1, Mvd] 

Ribonucleoside bisphosphate metabolic process [Acsl3, Acsl4, Hmgcr, Hmgcs1, Mvd] 

Term p value, term p value corrected with Bonferroni step down, group p value, and group p value corrected with Bonferroni 

step down were less than 0.01 

  
Table 2. Hub nodes among the 56 queried DEGs from the main connected component of the reconstructed network are presented.  

No. Query term K BC CC Stress Clustering coefficient 

1 Hmgcr 50 0.880 0.600 7598 0.520 

2 Hmgcs1 42 0.140 0.515 2108 0.650 

3 Msmo1 38 0.040 0.479 944 0.696 

4 Nsdhl 37 0.040 0.469 720 0.691 

5 Lss 36 0.020 0.465 532 0.722 

6 Fdps 34 0.020 0.463 526 0.783 

7 Idi1 32 0.040 0.461 526 0.780 

8 Mvd 32 0.220 0.469 1158 0.744 

9 Ppara 28 1.000 0.547 6988 0.471 

10 Hsp90aa1 22 0.240 0.486 2014 0.537 

K, BC, and CC refer to degree, betweenness centrality, closeness centrality, respectively 
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This function of Hmgcs1 is associated with 

several critical functions such as regulation of 

testosterone synthesis, risk of prostate cancer, 

and gastric cancer promotion [22-24]. It is 

reported that the enhanced total cholesterol and 

low-density lipoprotein cholesterol (LDL-C) in 

serum due to hypercholesteremia, increase the 

risk of promotion of atherosclerosis. 

Investigations have revealed that Hmgcs1 

inhibition  is associated with considerable 

reduction of total cholesterol and LDL-C in 

serum of the high-fat diet-induced 

hypercholesteremia mice [25]. 

HMG CoA reductase (Hmgcr) is the first top hub 

and is ranked as the third genes in Figure 5 which 

is related to 20 biological terms. This enzyme as 

like Hmgcs1 is a rate-limiting enzyme in 

cholesterol synthesis [26].  

Mevalonate diphosphate decarboxylase (Mvd) is 

the second top gene in Figure 5 which is related 

to 22 biological terms. Mvd has appeared as the 

8
th
 hub in Table 2. Based on the published data, 

sterol regulatory element-binding protein 2 

(Srebp2) transcription factor regulates cholesterol 

biosynthesis tightly via regulation of Hmgcs1, 

Hmgcr, Fdps, and Mvd as the related enzyme to 

cholesterol synthesis [27]. Farnesyl diphosphate 

synthase (FDPS) is the 6
th
 hub and the 4

th
 ranked 

gene in Figure 5 that is related to 19 biological 

terms of “cholesterol metabolism pathway”. 

Lanosterol synthase (Lss) is the fifth hub and 

ranked gene in Figure 5. Lss is related to the 17 

biological terms. Published shows that mutations 

of Lss result in cholesterol deficiency- associated 

cataracts in rat [28]. Another key dysregulated 

gene is isopentenyl-diphosphate delta isomerase 

1 (Idi1). Upregulation of Idi1 and downregulation 

of Hmgcs2; the enzymes of “super-pathway of 

cholesterol biosynthesis” in stretched atrial 

myocytes of mitral (HL-1 atrial myocytes) are 

reported. It should be mentioned that lipid over-

expression is detected in the atrial myocytes of 

mitral regurgitation patients [29].  

The last two key genes are Nsdhl and Msmo1. 

NAD(P) dependent steroid dehydrogenase-like 

(Nsdhl) is highlighted in breast cancer metastasis 

via “TGFβ signaling pathway” and “cholesterol 

biosynthesis” alteration [30]. Evaluation of gene 

expression pattern of preadipocytes and 

differentiated adipocytes of 3T3-L1 to explore 

regulation and mechanism of adipogenesis 

indicates that methyl sterol Monooxygenase 1 

(Msmo1) (the related enzyme of “cholesterol 

synthesis pathway”) is down-regulated in 

differentiated adipocytes [31].  

 

Conclusion 
PPI network analysis showed Hmgcr, Hmgcs1, 

Msmo1, Nsdhl, Lss, Fdps, Idi1, Mvd, Ppara, and 

Hsp90aa1 are the critical DEGs that are targeted 

by coffee. Considering gene ontology analysis 

and PPI network analysis, Hmgcr, Hmgcs1, 

Msmo1, Nsdhl, Lss, Fdps, Idi1, and Mvd were 

introduced as the key targeted genes.  
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