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Abstract 
Background and objectives: To identify new targets for cancer clinical management, protein-protein 

interaction (PPI) network analysis of proteome data could accelerate this approach. For this aim, 

proteins with differential expressions in 6-shogaol exposure from proteomics study underwent 

protein-protein interaction (PPI) network analysis. Methods: Cytoscape version 3.8.2 and its plug-ins 

including NetworkAnalyzer and ClueGO2.5.8+CluePedia1.5.8 were applied for the construction and 

the corresponding analysis of the network. Results: A number of six differentially expressed proteins 

(DEPs) were identified as hub-bottlenecks of the PPI network. The critical proteins GAPDH, ENO1, 

HSP90AB1, ACTG1, RPSA, and CALR were determined as central elements of the analyzed network 

and their related biological processes were identified as “protein folding chaperones” and “glucose 

catabolic process”. Conclusion: Potential candidates may be predicted as both anticancer agents and 

promoters of side effects of 6-shogaol in cancer treatment; however, complementary studies are 

required to provide validation and deeper understating of its molecular behavior in this regard.    
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Introduction 
Herbal medicine has presented capable 
candidates in the treatment of many diseases 
including cancer. Natural bioactive compounds 
from plants own cancer-fighting properties as 
apoptosis promoting factors, anti-cell growth, 

immunity regulator, and adjuvant therapy 
resources [1,2]. Ginger, as a popular plant, has 

indicated health benefits for human with regards 
to revealing nausea, menstrual problems, diabetes, 
and obesity [3-5]. This species has an ancient 
application in Chinese history as both food and 
medicine [6]. Ginger has also showed to be 

effective in breast, colon, and gastric cancer 
cancers which is related to its phenolic 
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substances [6-8]. Different secondary metabolites 
of ginger including 6-gingerol and 6-, 8-, and 10 
shogaols  have been evaluated for this purpose 
and expressed promising results [9-11]. As a 
bioactive constitute of ginger, 6-shogaol has 

expressed beneficial effects in neurodegenerative 
diseases and cancer [12,13]. Pharmaceutical 
benefits of this component have been proven both 
in vitro and in vivo for cancers of breast, colon, 
prostate, and lung [14-17]. The suggested 
mechanisms by which these components show 

cancer preventing properties are inhibiting cell 
proliferation and apoptosis [18,19]. Molecular 
analysis can help in order to recognize what 
agents are important and contribute in these 
processes [20]. Molecular studies can shed lights 
on how the medical plants such as ginger act as 

antitumor agents in different kinds of cancers 
[21]. One of the innovative approaches is 
proteomics that is applied for biomarker 
discovery and understanding treatment outcomes 
[22]. This top-notch line of high throughput 
evaluation of proteome is in a great consideration 

for different exploration fields including 
prognosis, drug targeting, and revealing 
underlying mechanism of diseases and related 
treatments [23]. In addition, bioinformatics can 
assist in providing complementary information 
by analysis protein-protein interaction (PPI) 

network of tumor biology. The mechanisms of 
treatment are better explained by the 
identification of central biomarkers of PPI 
network. Central proteins can be explored by 
using designated centrality parameters including 
degree and betweenness centrality. These 

proteins are essential for the network stability and 
strength [24]. Therefore, biomarkers with 
centrality values are more prominent in the 
mechanisms of herbal medicine treatments and as 
valuable therapeutic targets [25].   
Cervical cancer is a common malignancy in 

women ranked as fourth in the world [26] and is 
associated with high rates of mortality [27]. 
Surveys show that linked factors in raising the 
chance of cervical cancer could be lack of 
screening methods and programs especially in 
developing countries [28,29]. Proteomics 

analysis of cervical HeLa cells treated with 6-
shogaol might be a promising approach to 
accelerate treatment of the cervical cancer [30] 
and bioinformatics can develop additional 
information in this area. Thus, in this paper, 
proteome data of the above mentioned study was 

subjected for protein-protein interaction network 

analysis for elucidating ginger therapeutic effects 
and its possible side effects on cervical cancer.     
 
Materials and Methods 
Ethical considerations 

This project is approved by ethical committee of 

Shahid Behheshti university of Medical Sciences 

(IR.SBMU.RETECH.REC.1400.414). 

 
Data collection 

The proteome data from label-free shotgun 

proteomics study [30] was applied for the 

protein-protein interaction network analysis in 

this research. In the main conducted study, 

cervical HeLa cell line was treated with 15 μM 6-

shogaol for 24 hours. The proteomics analysis 

identified 76 differentially expressed proteins 

(fold change≥2) and (p-value<0.05), most of 

them were up-regulated in the presence of 6-

shogaol. The original study explored the 

interaction network analysis; however, not the 

centrality analysis [30]. By the aid of Cytoscape 

3.8.2 V and its applications, a PPI network of 

differentially expressed proteins (DEP)s was 

constructed and analyzed [31]. STRING database 

as the source for predicting the network. Disease 

query, PubMed query, STITCH query, and 

protein query are the sources for attainment of 

interactions based on the design of the study [32].   

A protein query was used to screen the DEPs as a 

connecting network in the Cytoscape platform. 

For this aim, a confidence score cut off=0.5 was 

set to provide better statistically significant 

connections. In the next step, topological features 

of the PPI network including common Degree (K) 

and Betweenness centrality (BC) features were 

computed by NetworkAnalyzer application [33]. 

Proteins in the network are called nodes and the 

links between them are considered as edges. 

Degree is a number of edges connected directly 

to a node whereas betweenness centrality is the 

function of shorts paths which a node participates. 

Hub-bottlenecks, nodes with highest values of 

degree and betweenness centrality are considered 

as central elements of the studied PPI network 

[34]. These parameters are calculated as 10% of 

highest ranked degree and betweenness centrality 

values of the proteins. Common nodes are 

suggested as hub-bottlenecks of the PPI network. 

These key portions could be important in the 

network structure stability.  Moreover, 

enrichment analysis by the application ClueGO 

2.5.8+CluePedia 1.5.8 was performed for 
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biological process determination of the hub-

bottlenecks [35,36].  

 

Statistical analysis 

The designated kappa score cut off which falls 

between 0-1, was higher than the default option 

(0.4) and equals to 0.5 for term grouping. 

Moreover, the number of corresponding genes 

and percentage per group was assigned as 2 and 3, 

respectively. Correction p-value method was 

Bonferroni step-down test. The statistical 

significance for the grouping was set as p≤0.05. 

 

Results and Discussion 
The PPI network was retrieved via Cytoscape by 

querying the 76 DEPs from 6-shogaol-treated 

cervical cancer HeLa cells proteome (Figure 1). 

According to the obtained network, DEPs are 

connected and only one of them, GSTM3, is 

remained as an individual node. This network 

query just comprises the DEPs and no additional 

neighbors.  

To screen the hub and bottlenecks of the PPI 

network, 10% of high ranked degree (K) and 

betweenness centrality (BC) nodes were assigned. 

The hub-bottlenecks are the nodes with high 

values of degree and betweenness centrality that 

are tabulated in table1.   

Among the hub-bottlenecks of the PPI network, 

HSP90AB1 is down-regulated and the rest are 

up-regulated. GAPDH with degree of 50 and the 

betweenness of 0.4 is the top central node. CALR 

is the least important hub-bottleneck with the 

degree of 17 and BC of 0.04. 

In order to better depict a scale free network, 

scatter plot of degree and betweenness value 

distribution is described in figure 2. 
 

Table 1. The list of hub-bottlenecks of the PPI network ranked 

based on degree values  

Row Display name Regulation K BC 

1 GAPDH Up 50 0.4 

2 ENO1 Up 27 0.05 

3 HSP90AB1 Down 23 0.07 

4 ACTG1 Up 22 0.04 

5 RPSA Up 21 0.04 

6 CALR Up 17 0.04 

 

 

 
Figure 1. The protein-protein interaction network of 6-shogaol-treated HeLa cervical cancer cells; number of nodes and edges 

are 76 and 389, respectively. 
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Figure 2. Scatter plot of degree and betweenness values distribution 

 
 

Figure 3. Bar chart view of biological process terms associated with hub-bottlenecks of the protein-protein interaction network, 

p≤0.05 

 

A scale free network was approved by exhibiting 

a scatter plot of degree and betweenness 

centrality distributions. Based on this analysis, 

few numbers of nodes demonstrated high values 

of degree and betweenness centrality which is a 

nature of scale-free network.   

In order to identify the gene ontology properties 

of hub-bottlenecks, biological processes 

annotation via ClueGO+ CluePedia was handled 

through Cytoscape (Figure 3).     

The Y-axis describes the terms’ name and X-axis 

implies the protein percentage per terms. The 

numbers in front of term bars show number of 

linked proteins. Protein folding chaperone and 

glucose catabolic process are the highlighted 

leading terms of each group. The two groups are 

displayed with color codes of blue and pink. 

Asterisk sign shows the statistical significance of 

contribution of the correlated term.   

Expression analysis in a protein-protein 

interaction network scale could predict the most 

fundamental agents of the network stability and 

thus introduction of the most promising 

biomarkers. Ginger, on the other hand, accounts 

as a medicinal plant that shows anticancer 

properties in different kinds of tumors such as 

cervical cancer, breast cancer, lung cancer, and 

colon cancer [14,30,37]. One of the most major 

potent components of ginger is 6-shogaol that 

possess antioxidant and anti‐inflammatory 

activities [38]. In the original study, pathways of  

endoplasmic reticulum stress and mitochondrial 

pathway were diagnosed as a part of 6-shogaol 

apoptosis mechanism against cancer development 

[30].   

To shed lights on the underlying mechanisms of 

6-shogaol in cancer and probing adequate targets 

for drug designing, bioinformatics assessment of 
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proteome information could be beneficial [39]. In 

this view, PPI analysis of proteome data of 6-

shogaol-treated cervical cells via Cytoscape 

software was handled. The visualized network 

indicates that DEPs are in significant interactions 

as they are all in interacting network with the 

assigned statistical criteria except one DEP. 

Furthermore, the suggested hub-bottlenecks 

include GAPDH, ENO1, HSP90AB1, ACTG1, 

RPSA, and CALR. These nodes are all 

differentially expressed proteins and almost all of 

them are up-regulated except HSP90AB1. These 

six proteins could be as highlights of the cervical 

cancer proteome feasible targets and 

fundamentals of ginger biological activity.   

Clarification of the role of these proteins in 

cancer initiation and development can be 

considered by literature survey. Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) as the top 

hub-bottleneck is a housekeeping gene that its 

dysregulation has been reported in many cancers 

[40]. GADPH is noteworthy in development of 

cancer and highlights the novel function of 

glucose metabolism in cancer [41]. There is a 

controversy about the pivotal role of this enzyme 

that according to some studies this protein 

accelerates the metastasis process of cancer 

whereas others suggest that it may pinpoint as a 

cell death regulator [41].  The up-regulation  of 

this protein is known in different cancers [42] 

which is also noticed in cervical cancer [43].  In 

the main study, GADPH was also reported to be 

up-regulated in cervical cancer HeLa cells treated 

with 6-shogaol. It can be inferred based on 

contradictory reports, this outcome can be due to 

the either possible side effects or anticancer 

process of treating with 6-shogaol. The next 

ranked hub-bottleneck is also a glycolysis 

enzyme, α-enolase (ENO1), which has promoting 

effects on many cancers [44-46]. Increases 

expression of ENO1 induced by 6-shogaol can be 

consider as an unfavorable effect. It is clear that 

the first high ranked hub-bottlenecks are 

prominently involved in glucose metabolism. 

This process is vital in tumor progression and 

metastasis in a wide range of cancers [47]. Heat 

Shock Protein 90 Alpha Family Class B Member 

1 (HSP90AB1) is down regulated in exposure to 

6-shogaol in the original study and it is reported 

up-regulated in many solid tumors including 

cervical cancer [48,49]. It can be concluded that 

6-shogaol possess modulatory effects on 

HSP90AB1. Actin Gamma 1 (ACTG1) is the 

next protein that its dysregulation has been 

highlighted in skin cancer, hepatocellular 

carcinoma, and uterine cancer [50-52]. While this 

protein is reduced in expression in ovarian cancer 

[53] in other types of cancers is over-expressed. 

By up-regulating ACTG1, 6-shogaol may show 

regulatory properties. Ribosomal Protein SA 

(RPSA) is also a hub-bottleneck that associates 

with cervical cancer and pancreas cancer [54,55]. 

Calreticulin (CALR) as a chaperon protein of ER 

plays role in many processes of the cells. It 

participates as a major component in correct 

folding of protein in ER [56].  Non-small cell 

lung cancer is one of the reported malignancies 

that this proteins is one of its prognostic 

biomarkers [57]. In addition, CALR is important 

in Notch Signaling in cervical cancer which 

shows down-regulation in this system [58]. By 

promoting the up-regulation of this protein, 6-

shogaol can thereby regulate its levels. All of the 

central proteins reported correlations with 

cervical tumorigenesis [43,45,49,54,58,59). 

To investigate the ontology characteristic of hub-

bottlenecks, ClueGO+CluePedia combined plug-

ins analyzed the proteins. Enrichment analysis 

specified that there are two statistically 

significant groups of biological processes related 

to the hub-bottlenecks. These groups may be the 

most associated biological processes with the 

mechanisms of 6-shogaol treatment. Thus, the 

implication of “glucose catabolic process” and 

“protein folding chaperone” in cancer could be 

altered by regulation of hub-bottlenecks. 

The proteins acting as hub-bottlenecks and their 

biological processes could be essential in 

maintenance of the PPI network stability and 

consequently in favor of ginger effectiveness. 

While the first two hub-bottlenecks indicate 

fundamental roles in cancer development by 

contributing in glucose metabolism, the others 

show possible important influences in regulation 

of protein expression. The feasible contradictory 

properties of 6-shogaol in cancer therapy could 

propose presence of its beyond preventing effects 

which requires additional studies. 

 

Conclusion 
The network-based analysis introduced central 

proteins including GAPDH, ENO1, HSP90AB1, 

ACTG1, RPSA, and CALR that may represent as 

either a part of underlying antitumor mechanisms 

of 6-shogaol or its side effects in cancer 

treatments. These candidates may serve as 
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prospective drug targets in the future of cervical 

cancer treatments. It is suggested that more 

investigations regarding contradictory effects of 

ginger to be pursued.  
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