Research Journal of Pharmacognosy (RJP) 3(2), 2016: 9-15 Received: Dec 2015 Accepted: Feb 2016



Original article

# Phytochemical constituents, antioxidant activity and toxicity potential of *Phlomis olivieri* Benth.

M.R. Delnavazi<sup>1</sup>, F. Mohammadifar<sup>2</sup>, A. Rustaie<sup>1</sup>, M. Aghaahmadi<sup>3</sup>, N. Yassa<sup>1\*</sup>

<sup>1</sup>Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. <sup>2</sup>Faculty of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran. <sup>3</sup>Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.

## Abstract

**Background and objectives:** *Phlomis olivieri* Benth. (Lamiaceae) is a medicinal plant widely distributed in Iran. In the present study, we have investigated the phytochemical constituents, antioxidant activity and general toxicity potential of the aerial parts of this species. **Methods:** Silica gel (normal and reversed phases) and Sephadex LH-20 column chromatographies were used for isolation of compounds from methanol-soluble portion (MSP) of the total extract obtained from *P. olivieri* aerial parts. The structures of isolated compounds were elucidated using <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and UV spectral analyses. Antioxidant activity and general toxicity potential of MSP were also evaluated in DPPH free radical-scavenging assay and brine shrimp lethality test (BSLT), respectively. **Results:** One caffeoylquinic acid derivative, chlorogenic acid (1), one iridoid glycoside, ipolamiide (2), two phenylethanoid glycosides, phlinoside C (3) and verbascoside (5), along with two flavonoids, isoquercetin (4) and naringenin (6) were isolated and identified from MSP. The MSP exhibited considerable antioxidant activity in DPPH method (IC<sub>50</sub>; 50.4 ± 4.6 µg/mL), compared to BHT (IC<sub>50</sub>; 18.7 ± 2.1 µg/mL), without any toxic effect in BSLT at the highest tested dose (1000 µg/mL). **Conclusion:** the results of the present study introduce *P. olivieri* as a medicinal plant with valuable biological and pharmacological potentials.

Keywords: brine shrimp lethality test, chromatography, DPPH, Lamiaceae, *Phlomis olivieri* Benth.

## Introduction

*Phlomis olivieri* Benth. belonging to the Lamiaceae family, is a perennial herbaceous plant distributed in south-western Asia [1]. In Iranian Traditional Medicine, the leaves of this species have been mentioned useful for alleviation of pains and its aerial parts have also been used as carminative [2,3].

So far, a number of biological and phytochemical studies have been conducted on the various

extracts obtained from the aerial parts of *P. olivieri* [4-13]. In 2003, Sarkhail *et al.* reported significant antinociceptive effects from the total extract of *P. olivieri* aerial parts at the dose of 150 mg/kg in visceral writhing test model in mice [4]. The methanol extract of the aerial parts has shown to possess a concentration-dependent antibacterial activity against *Staphylococcus aureus*, *Streptococcus sanguis*, *Escherichia coli*,

Available at: http://rjpharmacognosy.ir Copy right<sup>©</sup> 2014 by the Iranian Society of Pharmacognosy \**Corresponding author: yasa@sina.tums.ac.ir*, Tel/Fax: +9821-66959101

Pseudomonas aeruginosa and Klebsiella pneumoniae, as well as antioxidant effect when used in sunflower oil [5,6]. Two flavonoid chrysoeriol-7-O-β-Dderivatives including glucopyranoside and 6,7-dimethoxy-5-hydroxy flavanone, together with one phenylethanoid glycoside, verbascoside have been isolated from the aerial parts of P. olivieri during previous phytochemical investigations [7,8]. Moreover, there are some reports on essential oil compositions of this species indicating to the presence of sesquiterpene hydrocarbones (mainly germacrene D), as the main group of its chemical constituents [9-13].

In the present study, phytochemical constituents of *P. olivieri* aerial parts were investigated and its antioxidant and general toxicity potentials were evaluated in DPPH method and brine shrimp lethality test, respectively.

# Experimental

General procedures

<sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra were obtained on a Bruker Avance DRX 500 spectrometer. UV spectra were recorded on a CECIL 7250 spectrophotometer in methanol and after the addition of shift reagents.

Silica gel (230-400 mesh, Merck), RP-C18 (230-400 mesh. Fluka. Switzerland) and Sephadex LH-20 (Fluka, Switzerland) were used as solid phases for column chromatographies. Pre-coated Silica gel GF<sub>254</sub> sheets (Merck, Germany) were applied for the thin layer chromatography (TLC) and the spots were monitored under UV (254 and 366 nm) and by spraying anisaldehyde/ $H_2SO_4$ reagent. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Artemia salina eggs were obtained from Sigma-Aldrich (Germany) and Ocean nutrition (Belgium) companies, respectively. Other chemicals and all of the used solvents were also purchased from Merck chemical company.

# Plant material

The flowering aerial parts of *P. olivieri* were gathered in July 2013 from the southern slopes of Mishu-dagh Mountains, East-Azerbaijan province, Northwest of Iran. The plant specimen was then authenticated by botanist Dr. M. Aghaahmadi from University of Isfahan, Isfahan, Iran.

# Extraction

The shade-dried aerial parts (0.8 kg) were powdered and macerated with methanol  $(6\times4 \text{ L})$ at room temperature. The obtained total methanol extract was concentrated using a rotary evaporator at 40 °C and dried completely by a freeze dryer. The freeze dried extract was then defatted by eluting with enough volumes of petroleum ether and chloroform, respectively. Finally, the residual methanol-soluble portion (MSP) was subjected to phytochemical and biological studies.

# Isolation and purification of the compounds

Thirty five grams of the MSP was moved to a Sephadex LH-20 column and eluted with MeOH-H<sub>2</sub>O (9:1) to get three fractions (A-C). Reversedphase  $(C_{18})$  column chromatography of the fraction B (10 g) with a gradient mixture of ACN-H<sub>2</sub>O (0.5:9.5-2:8) yielded six fractions (B1-B6). Compound 1 (23 mg) was isolated from the fraction B1 (1.2 g) on a Sephadex LH-20 column (MeOH-H<sub>2</sub>O, 8:2) and its impurities were removed over a RP-18 column (ACN-H<sub>2</sub>O, 1:9). Faction B2 (169 mg) was subjected to RP-18 column chromatography with ACN-H<sub>2</sub>O (0.2:9.8-1:9) to get four fractions (B2a-B2d). Compound 2 (25 mg) was obtained from the fraction B2c (43 mg) over the Sephadex LH-20 column eluted with MeOH-H<sub>2</sub>O (8:2). Fraction B3 (215 mg) was eluted on a Sephadex LH-20 column with MeOH-H<sub>2</sub>O (8:2) to get compound 3 (17 mg). RP-18 column chromatography of the fraction B4 (720 mg) with ACN-H<sub>2</sub>O (1:9-2:8) resulted in five fractions (B4a-B4e). Compounds 4 (21 mg) and 5 (36 mg) were isolated from the fractions B4b and B4d, respectively, over the Silica gel columns with EtOAc-CH<sub>3</sub>COOH-HCOOH-H<sub>2</sub>O (36:1:1:2.4) as the eluent. Silica gel column chromatography of the fraction B6 (276 mg) with CHCl<sub>3</sub>-EtOAc (7:3-3:7) resulted

in five fractions (B6a-B6e). Compound **6** (15 mg) was achieved from the fraction B6a (83 mg) on a RP-18 column eluted with ACN-H<sub>2</sub>O (7:3).

#### Free radical-scavenging assay

The free radical-scavenging effect of MSP was 2,2-diphenyl-1-picrylhydrazyl assessed in (DPPH) assay [14]. The stock of DPPH solution was prepared at the concentration of  $8.0 \times 10^{-2}$ mg/mL in methanol. MSP dilutions were also made in methanol to get concentrations of  $5.0 \times 10^{-1}$ ,  $2.5 \times 10^{-1}$ ,  $1.2 \times 10^{-1}$ ,  $6.2 \times 10^{-2}$ ,  $3.1 \times 10^{-2}$ and 1.6×10<sup>-2</sup> mg/mL. MSP prepared solutions (2.0 mL each) were mixed with DPPH solution (2.0 mL). After thirty minutes, UV absorbances of the solutions were recorded at 517 nm. Butylated hydroxytoluene (BHT), a synthetic antioxidant, was used as the positive control. The experiments were repeated tree times and the  $IC_{50}$ values were expressed as Mean  $\pm$  SD.

#### Brine shrimp lethality test

Brine shrimp lethality test (BSLT) was used for evaluation of general toxicity potential of MSP [15]. The *Artemia salina* L. eggs were hatched in sterile artificial seawater (38 g/L, pH 9) under constant aeration for 48 hours at 30 °C. MSP (50 mg) was dissolved in freshly prepared artificial sea water and then diluted to obtain the solutions with 1000, 700, 500, 300, 100 and 10 µg/mL concentrations in a series of tubes containing about 20 active nauplii in each. Following the incubation of the tubes at 30 °C for 24 hours under light, the surviving nauplii were counted to achieve the LC<sub>50</sub> value (the concentration causing 50% lethality). Podophyllotoxin, a known cytotoxic natural compound, was applied as the positive control. The assays were performed in triplicate and the LC<sub>50</sub> values were reported as Mean  $\pm$  SD.

## **Results and discussion**

Phytochemical analyses of the methanol-soluble portion (MSP) of *P. olivieri* total extract on Silica gel (normal and reversed phases) and Sephadex LH-20 columns resulted in isolation of one caffeoylquinic acid derivative, chlorogenic acid (1), one iridoid glycoside, ipolamiide (2), two phenylethanoid glycosides, phlinoside C (3) and verbascoside (acteoside) (5), together with two flavonoids, quercetin-3-O- $\beta$ -D-glucopyranoside (isoquercetin) (4) and naringenin (6) (figure 1).

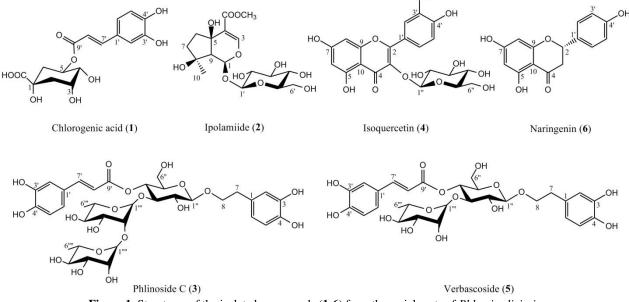



Figure 1. Structures of the isolated compounds (1-6) form the aerial parts of Phlomis olivieri

The structures of the isolated compounds were established using <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and UV spectral analyses, as well as by comparison with published data [7,16-20].

Compound 1: *Chlorogenic acid*; <sup>1</sup>H-NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  7.45 (1H, *d*, *J*= 15.9 Hz, H-7'), 7.04 (1H, *d*, *J*= 1.8 Hz, H-2'), 6.98 (1H, *dd*, *J*= 8.0, 1.8 Hz, H-6'), 6.77 (1H, *d*, *J*= 8.0 Hz, H-5'), 6.22 (1H, *d*, *J*=15.9 Hz, H-8'), 5.16 (1H, *m*, H-5), 3.93 (1H, *m*, H-3), 3.50 (1H, *dd*, *J*= 9.7, 2.7 Hz, H-4), 1.6-2.0 (4H, *m*, H-2,6); <sup>13</sup>C-NMR (DMSO- $d_6$ , 125 MHz):  $\delta$  176.28 (C-7), 166.35 (C-9'), 148.61 (C-4'), 145.77 (C-3'), 144.64 (C-7'), 125.38 (C-1'), 121.22 (C-6'), 115.80 (C-5'), 114.64 (C-2'), 114.49 (C-8'), 75.18 (C-1), 73.33 (C-4), 71.62 (C-3), 71.48 (C-5), 39.7 (C-2), 38.11 (C-6) [16].

Compound **2**: *Ipolamiide*; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, 500 MHz): 7.44 (3H, *s*, H-3), 5.81 (1H, *s*, H-1), 4.58 (1H, *d*, *J*= 7.8 Hz, H-1'), 3.90 (1H, *br d*, *J*= 11.6 Hz, H-6'b), 3.73 (3H, *s*, COOCH<sub>3</sub>), 3.65 (1H, *dd*, *J*= 11.6, 6.0 Hz, H-6'a), 3.0-3.4 (4H, H-2'-5'), 2.47 (1H, *s*, H-9), 2.26 (1H, *m*, H-6b), 2.07 (1H, *m*, H-7b), 1.93 (1H, *m*, H-6a), 1.56 (1H, *m*, H-7a), 1.15 (3H, *s*, C-10); <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, 125 MHz):  $\delta$  168.03 (COOCH3), 153.40 (C-3), 115.81 (C-4), 100.20 (C-1'), 94.80 (C-1), 78.90 (C-8), 77.82 (C-5'), 76.84 (C-3'), 74.93 (C-2'), 71.09 (C-5,4'), 62.80 (C-6'), 61.13 (C-9), 51.06 (COO<u>C</u>H3), 40.3 (C-7), 38.83 (C-6), 23.72 (C-10) [17].

Compound **3**: *Phlinoside C*; <sup>1</sup>H-NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  7.67 (1H, d, J= 15.8 Hz, H-7'), 7.04 (1H, *brs*, H-2'), 6.93 (1H, *br d*, J= 8.3 Hz, H-6'), 6.76 (1H, d, J= 8.3 Hz, H-5'), 6.67 (1H, *brs*, H-2), 6.63 (1H, d, J= 8.3 Hz, H-5), 6.55 (1H, d, J= 8.3 Hz, H-6), 6.25 (1H, d, J= 15.8 Hz, H-8'), 5.33 (1H, *br s*, H-1'''), 4.90 (1H, *br s*, H-1'''), 4.36 (1H, d, J= 7.8 Hz, H-1''), 3.1-4.1 (16H, H-8, 2''-6'', 2'''-5''', 2'''-5'''), 2.77 (2H, *t*, J= 7.1 Hz, H-7), 1.24 (1H, d, J= 6.0 Hz, H-6'''), 1.05 (1H, d, J= 6.0 Hz, H-6'''), 1.05 (1H, d, J= 6.0 Hz, H-6'''), 146.47 (C-7'), 145.97 (C-3'), 145.22 (C-3), 142.70 (C-4), 131.33 (C-1), 128.98 (C-1'), 124.28 (C-6'), 118.86 (C-6), 117.25 (C-5), 116.85 (C-2), 116.23 (C-5'), 115.13

(C-2'), 114.36 (C-8'), 104.12 (C-1"), 103.46 (C-1""), 99.72 (C-1""), 80.91 (C-2""), 79.34 (C-3"), 77.36 (C-5"), 75.31 (C-2"), 73.37 (C-4""), 73.31 (C-4""), 71.62 (C-8), 71.24 (C-3""), 71.04 (C-2""), 69.67 (C-4", 3""), 69.40 (C-5""), 69.71 (C-5""), 61.60 (C-6"), 32.11 (C-7), 14.85 (C-6""), 14.42 (C-6"") [18].

Compound 4: Quercetin-3-O-β-D-<sup>1</sup>H-NMR glucopyranoside (Isoquercetin); (DMSO- $d_6$ , 500 MHz):  $\delta$  7.60 (1H, d, J= 2.0 Hz, H-2'); 7.57 (1H, dd, J= 8.4, 2.0 Hz, H-6'); 6.84 (1H, d, J= 8.4 Hz, H-5'); 6.39 (1H, d, J= 2.0 Hz, H-8); 6.18 (1H, d, J= 2.0 Hz, H-6); 5.60 (1H, d, *J*= 6.9 Hz, H-1"); 3.0-3.7 (6H, H2"-6"); <sup>13</sup>C-NMR (DMSO-d<sub>6</sub>, 125 MHz): δ 177.37 (C-4), 164.51 (C-7), 161.23 (C-5), 156.34 (C-2), 156.10 (C-9), 148.57 (C-4'), 144.83 (C-3'), 133.26 (C-3), 121.53 (C-6'), 121.18 (C-1'), 116.14 (C-5'), 115.24 (C-2'), 103.80 (C-10), 100.86 (C-1"), 98.74 (C-6), 93.59 (C-8), 77.55 (C-5"), 76.42 (C-3"), 74.08 (C-2"), 69.95 (C-4"), 60.91 (C-6"); UV (MeOH) λmax: 256, 358., + NaOMe: 272, 411., +NaOAc: 272, 378 [19]. Compound **5**: Verbascoside (acteoside); <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, 500 MHz): δ 7.45 (1H, *d*, *J*=

15.9 Hz, H-7'), 7.04 (1H, d, J= 1.6 Hz, H-2'), 6.97 (1H, dd, J= 8.0, 1.6 Hz, H-6'), 6.77 (1H, d, J= 8.0 Hz, H-5'), 6.64 (1H, d, J= 1.6 Hz, H-2), 6.63 (1H, d, J= 8.0 Hz, H-5), 6.49 (1H, dd, J= 8.0, 1.6 Hz, H-6), 3.89 (2H, m, H-8), 2.70 (2H, m, H-7), 6.19 (1H, d, J= 15.9 Hz, H-8'), 5.03 (1H, br s, H-1"), 4.35 (1H, d, J= 7.8 Hz, H-1"), 3.1-3.8 (10H, H-2"-6", 2"'-5"'), 0.96 (3H, d, J= 6.2 Hz, H-6"); <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, 125 MHz): δ 165.84 (C-9'), 148.37 (C-4'), 145.51 (C-7'), 145.66 (C-3'), 144.85 (C-3), 143.43 (C-4), 129.32 (C-1), 125.63 (C-1'), 121.61 (C-6'), 119.70 (C-6), 116.33 (C-2), 115.83 (C-8'), 115.50 (C-5), 114.57 (C-2'), 113.71 (C-5'), 102.36 (C-1"), 101.31 (C-1""), 79.31 (C-3"), 74.55 (C-2"), 74.54 (C-5"), 71.66 (C-4""), 70.36 (C-8), 70.46 (C-2""), 70.37 (C-3"), 69.25 (C-4"), 68.80 (5"), 61.71 (C-6"), 35.10 (C-7), 18.23 (C-6") [7].

Compound **6**; *Naringenin*; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, 500 MHz): δ 7.32 (2H, *d*, *J*= 8.5 Hz, H-2', 6'); 6.80 (2H, *d*, *J*= 8.5 Hz, H-3', 5'); 5.88 (2H, *br s*,

H-6, 8); 5.43 (1H, *dd*, *J*= 12.6, 3.1 Hz, H-2); 2.67 (1H, *dd*, *J*= 17.0, 3.1 Hz, H-3eq), 3.20 (1H, dd, *J*= 17.0, 12.8 Hz, H-3ax); <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, 125 MHz):  $\delta$  194.90 (C-4), 166.86 (C-7), 163.26 (C-5), 163.06 (C-9), 157.83 (C-4'), 129.04 (C-1'), 127.81 (C-2', 6'), 114.58 (C-3', 5'), 101.71 (C-10), 96.67 (C-6), 94.38 (C-8), 77.85 (C-2), 46.21 (C-3) [20].

Phenylethanoid glycoside verbascoside (5) has been previously reported from this species [7], however, this is the first report on isolation of the compounds 1-4 and 6 from the aerial parts of P. olivieri. Within the genus Phlomis, phenylethanoid glycosides, iridoids and flavonoids, are the main phytochemicals and the isolated compounds 1-6, have been previously reported from other Phlomis species [21].

In DPPH test, the MSP exhibited a considerable free radical-scavenging activity with the  $IC_{50}$  value of 50.4  $\pm$  4.6 µg/mL, compared to BHT ( $IC_{50}$ ; 18.7  $\pm$  2.1 µg/mL) (table 1). However, it did not show any lethality effect on the brine shrimps larva at the highest tested concentration (2000 µg/mL) (table 1).

**Table 1.** The results of brine shrimp lethality test and DPPH free radical-scavenging assay of the methanol-soluble portion (MSP) of *Phlomis olivieri* total extract

| Samples                           | Brine shrimp<br>lethality activity<br>LD <sub>50</sub> (µg/mL) | DPPH free radical<br>scavenging activity<br>IC <sub>50</sub> (µg/mL) |
|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| Methanol-soluble<br>portion (MSP) | > 1000                                                         | $50.4\pm4.6$                                                         |
| Podophyllotoxin                   | $2.6\pm0.5$                                                    | -                                                                    |
| Butylated<br>hydroxytoluene (BHT) | -                                                              | $18.7\pm2.1$                                                         |

A literature review revealed that some in vitro and in vivo biological activities such as antioxidant, antimicrobial and analgesic effects have been documented for the compounds 1 and 4-6 [22-30]. Accordingly, isolated phenolic could be compounds (1.3-6)considered responsible for the observed antioxidant, antimicrobial and analgesic effects of P. olivieri [4-6]. Verbascoside, a main phenylethanoid glycoside present in Phlomis spp., has been considered for its beneficial health effects such as

antioxidant, neuroprotective, hepatoprotective, analgesic and anti-inflammatory properties [21,31]. Ipolamiide, an iridoid glycoside isolated from *Stachytarpheta mutabilis* (Verbenaceae), has also been reported as an antifeedant agent for two generalist insect species: *Schistocerca gregaria* and *Locusta migratoria* [32].

The results of the present study about the occurrence of these biologically active principles in *P. olivieri*, as well as its observed considerable antioxidant without toxicity effects, introduce it as a medicinal plant with valuable biological and pharmacological potentials. Moreover, the present study suggests *P. olivieri* as a safe carminative and antinociceptive remedy.

## Acknowledgments

This work was supported by Tehran University of Medical Sciences and Health Services under grant No. 15991.

## **Declaration of interest**

The authors declare that there is no conflict of interest. The authors alone are responsible for the content of the paper.

#### References

- [1] Jamzad Z. *Flora of Iran: Lamiaceae*. Tehran: Research Institute of Forests and Rangelands, 2012.
- [2] Parsa A. Medicinal plants and drugs of plant origin in Iran IV. *Plant Food Hum Nutr*. 1960; 7(1): 65-136.
- [3] Ghasemi PA, Momeni M, Bahmani M. Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan districts, Ilam province, Iran. *Afr J Tradit Complement Altern Med.* 2013; 10(2): 368-385.
- [4] Sarkhail P, Abdollahi M, Shafiee A. Antinociceptive effect of *Phlomis olivieri* Benth., *Phlomis anisodonta* Boiss. and *Phlomis persica* Boiss. total extracts. *Pharmacol Res.* 2003; 48(3): 263-266.
- [5] Morteza-Semnani K, Saeedi M, Mahdavi

MR, Rahimi F. Antimicrobial studies on extracts of three species of *Phlomis*. *Pharm Biol*. 2006; 44(6): 426-429.

- [6] Morteza-Semnani K, Saeedi M, Shahani S. Antioxidant activity of the methanolic extracts of some species of *Phlomis* and *Stachys* on sunflower oil. *Afr J Biotechnol*. 2006; 5(24): 2428-2432.
- [7] Sarkhail P, Monsef-Esfehani HR, Amin G, Salehi-Surmaghi MH, Shafiee A. Phytochemical study of *Phlomis olivieri* Benth. and *Phlomis persica* Boiss. *Daru J Pharm Sci.* 2006; 14(3): 115-121.
- [8] Zardoost MR, Gheibi S. Extraction and identification of flavonoids in *Phlomis* olivieri benth. Iran J Org Chem. 2011; 3(4): 751-753.
- [9] Ghasemi N, Sajjadi S, Lame M. Volatile constituents of *Phlomis olivieri* Benth. *Daru J Pharm Sci.* 2001; 9(1): 48-50.
- [10] Mirza M, Nik ZB. Volatile constituents of *Phlomis olivieri* Benth. from Iran. *Flavour Frag J.* 2003; 18(2): 131-132.
- [11] Khalilzadeh MA, Rustaiyan A, Masoudi S, Tajbakhsh M. Essential oils of *Phlomis persica* Boiss. and *Phlomis olivieri* Benth. from Iran. *J Essent Oil Res.* 2005; 17(6): 624-645.
- [12] Sarkhail P, Amin G, Shafiee A. Composition of the essential oil of *Phlomis olivieri* Benth. from north of Iran. *Daru J Pharm Sci.* 2006; 14(2): 71-74.
- [13] Mohammadifar F, Delnavazi MR, Yassa N. Chemical analysis and toxicity screening of *Phlomis olivieri* Benth. and *Phlomis persica* Boiss. essential oils. *Pharm Sci.* 2015; 21: 12-17.
- [14] Sarker SD, Latif Z, Gray AI. *Natural products isolation*. New Jersey: Humana Press Inc, 2005.
- [15] Akhbari M, Tavakoli S, Delnavazi M. Volatile fraction composition and biological activities of the leaves, bark and fruits of

Caucasian wingnut from Iran. J Essent Oil Res. 2014; 26(1): 58-64.

- [16] Durust N, Seckin O, Umur E, Durust Y, Kucukislamoglu M. The isolation of carboxylic acids from the flowers of *Delphinium formosum*. *Turk J Chem.* 2001; 25(1): 93-97.
- [17] Ersoz T, Harput US, Calis I, Donmez AA. Iridoid, phenylethanoid and monoterpene glycosides from *Phlomis sieheana*. *Turk J Chem*. 2002; 26(1): 1-8.
- [18] Nazemiyeh H, Rahman MM, Gibbons S, Nahar L, Delazar A, Ghahramani MA, Talebpour AH, Sarker SD. Assessment of the antibacterial activity of phenylethanoid glycosides from *Phlomis lanceolata* against multiple-drug-resistant strains of *Staphylococcus aureus*. J Nat Med. 2008; 62(1): 91-95.
- [19] Eldahshan O. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. *Curr Res J Biol Sci.* 2011; 3(1): 52-55.
- [20] Jeon SH, Chun W, Choi YJ, Kwon YS. Cytotoxic constituents from the bark of *Salix hulteni*. Arch Pharm Res. 2008; 31(8): 978-982.
- [21] Amor IL-B, Boubaker J, Sgaier MB, Skandrani I, Bhouri W, Neffati A, Kilani S, Bouhlel I, Ghedira K, Chekir-Ghedira L. Phytochemistry and biological activities of *Phlomis* species. *J Ethnopharmacol.* 2009; 125(2): 183-202.
- [22] Delazar A, Sarker S, Shoeb M, Kumarasamy Y, Nahar L, Nazemyieh H. Three antioxidant phenylethanoid glycosides from the rhizomes of *Eremostachys pulvinaris* (family: Labiatae). *Iran J Pharm Res.* 2010; 3 (S2): 23-24.
- [23] Delnavazi MR, Hadjiakhoondi A, Delazar A, Ajani Y, Tavakoli S, Yassa N. Phytochemical and antioxidant investigation of the aerial parts of *Dorema glabrum* Fisch.

& CA Mey. *Iran J Pharm Res.* 2015; 14(3): 925-931.

- [24] Dos-Santos MD, Almeida MC, Lopes NP, De-Souza GEP. Evaluation of the antiinflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. *Biol Pharm Bull.* 2006; 29(11): 2236-2240.
- [25] Gamal-Eldeen A, Kawashty S, Ibrahim L, Shabana M, El-Negoumy S. Evaluation of antioxidant, anti-inflammatory, and antinociceptive properties of aerial parts of *Vicia sativa* and its flavonoids. *J Nat Rem.* 2004; 4(1): 81-96.
- [26] Hu CY, Zhao YT. Analgesic effects of naringenin in rats with spinal nerve ligationinduced neuropathic pain. *Biomed Rep.* 2014; 2(4): 569-573.
- [27] Lou Z, Wang H, Zhu S, Ma C, Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. *J Food Sci.* 2011; 76(6): 398-403.
- [28] Mandalari G, Bisignano C, D'Arrigo M, Ginestra G, Arena A, Tomaino A, Wickham

M. Antimicrobial potential of polyphenols extracted from almond skins. *Lett Appl Microbiol.* 2010; 51(1): 83-89.

- [29] Nakamura T, Okuyama E, Tsukada A, Yamasaki M, Satake M, Nishibe S, Deyama T, Moriya A, Maruno M, Nishimura H. Acteoside as the analgesic principle of cedron (*Lippia hriphylla*), a Peruvian medicinal plant. *Chem Pharm Bull*. 1997; 45(3): 499-504.
- [30] Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M. Antibacterial activity of flavonoids and phenylpropanoids from *Marrubium* globosum ssp. libanoticum. Phytother Res. 2007; 21(4): 395-397.
- [31] Fu G, Pang H, Wong YH. Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics. *Curr Med Chem.* 2008; 15(25): 2592-2613.
- [32] Bernays E, DeLuca C. Insect antifeedant properties of an iridoid glycoside: ipolamiide. *Experientia*. 1981; 37(12): 1289-1290.