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Abstract 
Background and objectives: Matrix metalloproteinase-13 (MMP-13) is a proteolytic enzyme playing 

an important role in the activation of the MMP cascade, which seems to be vital in both bone 

metabolism and homeostasis. However, the up-regulation of MMP-13 is involved in developing 

several human disorders such as aggressive tumors, tooth decay, rheumatoid arthritis, osteoarthritis, 

skin ageing, and Alzheimer's disease. We performed a molecular docking analysis to discover the 

potential MMP-13 inhibitors in a total of 21 anthraquinone derivatives. Methods: The binding affinity 

of the tested compounds to the MMP-13 catalytic site was estimated by the Autodock 4.0 software. 

Moreover, the stability of the docked pose of the top-ranked compounds were examined using 

molecular dynamics simulations. Results: Pulmatin, sennidin A, emodin-8-glucoside, emodin, 

rhodoptilometrin, chrysophanol, knipholone, sennidin B, aloe emodin 8-glucoside, and aloe-emodin 

demonstrated considerable binding affinity to the MMP-13 active site. However, the molecular 

dynamics simulations showed that the docked poses of sennidin A and sennidin B were not 

considerably stable. Conclusion: The present study suggested that pulmatin, emodin-8-glucoside, 

emodin, rhodoptilometrin, chrysophanol, knipholone, aloe emodin 8-glucoside, and aloe-emodin may 

be considered as drug candidates for therapeutic applications in many human diseases. However, the 

validation of this finding is needed in the future. 
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Introduction 
Matrix metalloproteinases (MMPs) are zinc and 

calcium-containing enzymes taking part in 

degrading the extracellular matrix. Accordingly, 

MMP-13 (collagenase-3), which belongs to the 

MMP major family, is involved in many normal 

biological procedures within the human cells, 

including bone-building, tissue remodeling, and 

wound healing [1, 2]. The overexpression and/or 

hyperactivity of MMP-13 have been found to be 

associated with developing several human 

diseases such as rheumatoid arthritis and 

osteoarthritis [3-5]. A positive correlation has 

been observed in previous studies between the 

elevated expression of MMP-13 and the 

initiation/progression of both aggressive tumors 

and metastasis. Additionally, it has been 

demonstrated that collagenase-3 is up-regulated 

in several malignant tumors, including breast 

cancer, head and neck cancers, chondrosarcomas, 

and basal cell carcinomas in the skin [6,7]. Also, 
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previous studies have reported that MMPs take a 

part in the tooth caries’ progression [8-11]. In a 

study, Vasconcelos et al. [12] demonstrated that 

the single nucleotide polymorphism rs478927 in 

MMP-13 is correlated with caries’ occurrence as 

well as developmental defects of enamel in 

children. Moreover, MMP-13 was shown to  

contribute to skin ageing [13]. Therefore, MMP-

13 inhibition may be useful in the treatment of 

the above-mentioned disorders and also in 

developing new effective MMP inhibitors with 

low toxicity, which will be of interest to 

scientists in the future studies [13]. It may be 

suggested that MMP-13 inhibition could possibly 

lead to the prevention and/or therapeutic 

procedures of several human disorders such as 

cancer, osteoarthritis, rheumatoid arthritis, skin 

ageing, and dental caries. 

Molecular docking analysis is widely used to 

predict the potential inhibitors for certain 

proteins/enzymes involved in human disorders. It 

is known as a rapid and inexpensive approach 

used to estimate the binding affinity of drug 

candidates to the active site of target proteins [2, 

14-21]. Plant-based compounds, due to their 

lower toxicity and higher availability, have 

always been of interest to scientists for drug 

discovery [22]. 

Anthraquinones (AQs), that naturally occur in 

plants, are secondary metabolites mostly found in 

the families of Polygonaceae, Rubiaceae, and 

Rhamnaceae, as well as in fungi and lichens. 

AQs have been considered as natural food 

coloring substances and have shown several 

therapeutic effects in human disorders. They are 

made up of 9,10-anthracenedione to which 

different chemical groups are attached (e.g., 

hydroxyl, methyl, carboxyl, etc.) [23,24]. Figure 

1 demonstrates the backbone of AQ derivatives 

achieved by the ACD/ChemSketch version 12.01. 

Several AQs have been previously revealed to 

have therapeutic effects in various human 

disorders, including cancer [25,26], osteoarthritis 

[27], rheumatism [28], memory loss, 

inflammation, skin-ageing [29,30], and dental 

caries [2]; however, their mechanism of action 

has not been clearly understood yet [27]. While 

Ha et al. [31] in their study demonstrated that 

emodin could lead to the decreased expressions 

of MMP-1 and MMP-13 at the mRNA level. 

Besides, Emodin and obtusifolin were found to 

contribute to the downregulation of the MMP-3 

and MMP-13 at both the mRNA and protein 

levels [27,32].  

In the present study, we hypothesized that AQs, 

by binding to the catalytic domain of MMP-13, 

may act as the inhibitors of the enzyme. 

Therefore, to examine our hypothesis, we 

designed a molecular docking study for 

examining the binding affinity of several known 

AQs to the MMP-13 catalytic site 

(Supplementary Table). Additionally, molecular 

dynamics (MD) simulations were conducted to 

investigate the stability of docked pose of the top 

ranked AQs, in order to achieve more reliable 

results. 

 

 
 

Figure 1. Basic structure of anthraquinones; R: -OH, -CH3, 

-OCH3, -CH2OH, -CHO, -COOH  

 

Materials and Methods 
Ethical considerations 

We considered ethics in research in our study. 

The present study was approved by the Ethics 

Committee of Hamadan University of Medical 

Sciences, Hamadan, Iran (ethics no. 

IR.UMSHA.REC.1398.576). 

 
Structural preparing, molecular docking, and 

dynamics simulations 

The three-dimensional structures of MMP-13 

along with  AQ derivatives, which were 

considered as ligands in the current study, were 

achieved from the Research Collaboratory for 

Structural Bioinformatics (RCSB) and the 

PubChem databases available at 

https://www.rcsb.org [33] and 

https://pubchem.ncbi.nlm.nih.gov [34], 

respectively. The 5B5O file included the three-

dimensional coordinates of MMP-13 as well as 

the inhibitor of the enzyme (PDB ID: WMM) in 

the Nara et al.’s [35] study at 1.2 Å x-ray 

resolution. The molecular energy of MMP-13 and 

small molecules were minimized before the 

estimation of the binding affinity between the 

MMP-13 catalytic site and AQ derivatives. 

Swiss-pdbViewer version 4.1.0 

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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(http://www.expasy.org/spdbv) and HyperChem 

version 8.0.10 were used for the MMP-13 and 

small molecules’ energy minimization, 

respectively [36,37]. The molecular docking 

analysis was then completed by the AutoDock 

software (version 4.0), which is available at 

http://autodock.scripps.edu [38]. The Lamarckian 

Genetic Algorithm was used by AutoDock to 

estimate the affinity of binding (∆G binding) 

between the receptor and ligand. More details 

about the method used in this study such as its 

grid box settings and the amino acids recognized 

as the docking pocket, have been reported in our 

previous report [2]. 

We performed the molecular dynamics 

simulations to examine the stability of docked 

poses of the top-ranked AQs (top-10 AQs with 

the Ki value at the nanomolar scale) within the 

MMP-13 active site. Correspondingly, this was 

performed using the Discovery Studio Client 

version 16.1.0.15350 with the following settings: 

molecular dynamics simulation time, 1-

nanosecond (1ns); temperature, 310 K; solvent, 

water; and force field, CHARMm. 

 

Oral bioavailability study 
The drug-likeness of the AQ derivatives were 

predicted in terms of the Rule of Five (RO5), 

which has been well-presented in a study by 

Lipinski et al. [39]. The chemo-physical 

properties of the ligands were investigated using 

the PubChem database. According to the RO5, 

drug candidates to be considered suitable for oral 

use, can only violate one of the following four 

rules: molecular mass ≤ 500 gr/mol, log of the 

partition coefficient between octanol and water 

(LogP) ≤ 5, number of accepting hydrogen bonds 

≤ 10, and number of hydrogen bond donors ≤ 5. 

 

Results and Discussion 
According to the results of the docking analysis, 
it was demonstrated that, in total, 10 AQ 
derivatives, including pulmatin (chrysophanol-8-
0-glucoside), sennidin A (SA), emodin-8-

glucoside, emodin, rhodoptilometrin, 
chrysophanol, knipholone, SB, aloe emodin 8-
glucoside, and aloe-emodin can potentially bind 
to the MMP-13 catalytic site at the nanomolar 
concentration. The ∆G binding for these compounds 
were estimated to range from -9.76 kcal/mol (for 

pulmatin) to -8.23 kcal/mol (for aloe-emodin) 
(Figure 2). In our previous study, to compare the 
binding affinity of top-ranked flavonoids with the 

MMP-13 standard inhibitors, a total of five 
MMP-13 control inhibitors, including BP4 (PDB 
ID: 5289110), MMP9/MMP13 inhibitor (PDB ID: 
9983251), actinonin (PDB ID: 443600), 
PD166793 (PDB ID: 9918908), and WMM (PDB 

ID: 2366268) were docked with the MMP-13 
catalytic site [2]. Among the control inhibitors, 
the best binding affinity was calculated for BP4 
with the ∆G binding of -8.63 kcal/mol. According to 
the results of the present study, the binding 
affinity of the top-six MMP-13 inhibitors to the 

MMP-13 active site was found to be higher than 
that of BP4. The ∆G binding and inhibition constant 
(Ki) value of all the AQ derivatives tested in this 
study are listed in Table 1. Moreover, the details 
of energies achieved from docking analysis of the 
top-10 compounds are illustrated Table 2. All 

interactions between ligand and residues within 
the MMP-13 active site were identified for the 
top-10 AQs using the BIOVIA Discovery Studio 
Visualizer 19.1.0.18287 available at 
https://discover.3ds.com/discovery-studio-
visualizer-download. These interactions were 

compared once before and once after the 
molecular dynamics simulations and are 
presented in Table 3 and Figure 3. All hydrogen 
bonds with a distance longer than 5 Å were 
considered as insignificant. Figure 4 illustrates 
the interactions between the top-10 AQs in this 

study as well as the residues within the MM-13 
catalytic domain in a single network. 
Accordingly, this was constructed using the 
Cytoscape software, which is available at 
https://cytoscape.org/download.html [40]. 
In this study, the top-10 MMP-13 inhibitors were 

considered for drug-likeness analysis, based on 
the RO5 described in a study by Lipinski et al. 
[39]. According to the obtained results, eight of 
the AQ derivatives, including pulmatin 
(chrysophanol-8-0-glucoside), emodin-8-
glucoside, emodin, rhodoptilometrin, 

chrysophanol, knipholone, aloe emodin 8-
glucoside, and aloe-emodin due to their number 
of violations from RO5, were considered as 
orally active drugs (Table 4). 
Previous studies performed in this field have 
linked the up-regulation of MMP-13 to the 

pathogenesis of several human disorders, 
including aggressive tumors, tooth caries, 
rheumatoid, osteoarthritis, and Alzheimer's 
disease [3-11, 41, 42]  Besides, AQs are bioactive 
agents widely considered as potential anticancer 
compounds. 
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Table 1. Estimated energy of binding and inhibition constant values of 21 anthraquinone derivatives with matrix 

metalloproteinase-13 achieved from molecular docking analysis 

PubChem ID Ligand name Estimated energy of binding (kcal/mol) Ki 

442731 Pulmatin (Chrysophanol 8-O-glucoside) -9.76 70.58 nM 

92826 Sennidin A -9.65 84.50 nM 

99649 Emodin-8-glucoside -9.07 224.35 nM 

3220 Emodin -8.94 279.97 nM 

101286218 Rhodoptilometrin -8.93 285.97 nM 

10208 Chrysophanol -8.83 338.39 nM 

442753 Knipholone -8.55 541.41 nM 

10459879 Sennidin B -8.51 574.78 nM 

126456371 Aloe Emodin 8-Glucoside -8.49 594.84 nM 

10207 Aloe-emodin -8.23 929.88 nM 

3083575 Obtusifolin -8.10 1.15 uM 

361510 Emodic acid -8.07 1.22 uM 

10168 Rhein -7.98 1.41 uM 

2950 Danthron -7.96 1.47 uM 

3663 Hypericin -7.77 2.02 uM 

6683 Purpurin -7.77 2.03 uM 

10639 Physcion -7.69 2.29 uM 

6293 Alizarin -7.57 2.81 uM 

2948 Damnacanthal -7.31 4.35 uM 

124062 Rubiadin -7.11 6.13 uM 

160712 Nordamnacanthal -6.57 15.25 uM 

Ki, inhibition constant 

 
Table 2. Details of energies between top-10 anthraquinone derivatives and matrix metalloproteinase-13 active site calculated from 

docking study 

Ligand name 
Final intermolecular 

energy(kcal/mol) 

Final total 

internal energy 

(kcal/mol) 

Torsional free 

energy 

(kcal/mol) 

Unbound 

systems energy 

(kcal/mol) 

Estimated free 

energy of bindind 

(kcal/mol) 

Pulmatin 

(Chrysophanol 8-O-

glucoside) 

-9.91 -3.22 2.39 -0.99 -9.76 

Sennidin A -6.92 -7.14 2.68 -1.73 -9.65 

Emodin-8-glucoside -9.14 -3.61 2.68 -0.99 -9.07 

Emodin -9.24 -1.1 0.89 -0.5 -8.94 

Rhodoptilometrin -9.53 -1.28 1.79 -0.09 -8.93 

Chrysophanol -8.84 -1.11 0.6 -0.53 -8.83 

Knipholone -9.39 -2.53 2.09 -1.28 -8.55 

Sennidin B -8.2 -5.23 2.68 -2.24 -8.51 

Aloe Emodin 8-

Glucoside 
-7.58 

-4.87 2.98 -0.98 -8.49 

Aloe-emodin -9.39 -1.12 1.19 -1.09 -8.23 

 

 

 

 
 

 

Figure 2. The estimated binding energy of top-10 MMP-13 inhibitors with considerable inhibition constant values at the 

nanomolar scale; MMP-13: matrix metalloproteinase-13 
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Table 3. Interactions formed between top-10 anthraquinone derivatives and amino acids inside the matrix metalloproteinase-13 

catalytic site, before and after MD simulations 

Ligand name Hydrogen bond (distance Å) Hydrophobic interaction (distance Å) 
Miscellaneous 

(distance Å) 

Pulmatin (before 

MD) 

Gly183 (4.57 [classical]); Tyr244 

(4.95 [classical]); Glu223 (4.00* 

[classical]); Ala186 (4.02 [classical]) 

Gly183 (4.37 [pi-pi], 4.95 [pi-pi]); Leu184 (5.36 

[pi/alkyl]); Ile243 (5.78 [pi/alkyl]) 
NA 

Pulmatin (after MD) 
Glu223 (4.69 [classical]); Ala186 

(4.94 [non-classical]) 
NA NA 

Sennidin A (before 

MD) 
NA 

His232 (7.92 [pi-pi]); Leu184 (5.43 [pi-alkyl]); 

Pro242 (6.75 [pi-alkyl]) 
NA 

Sennidin A (after 

MD) 
NA NA NA 

Emodin-8-glucoside 

(before MD) 
NA Leu184 (5.63 [pi-alkyl]) NA 

Emodin-8-glucoside 

(after MD) 

Pro242 (4.33 [classical], 4.79 [non-

classical], 4.06 [non-classical]); 

Lys234 (3.86 [non-classical]) 

NA NA 

Emodin (before MD) 
Ala186 (2.64 [classical]); Ile243 

(4.70 [non-classical]) 

His232 (5.80 [pi-alkyl], 6.21 [classical]); Pro242 

(4.65 [pi-alkyl], 4.79 [alkyl]); Leu185 (5.35 [pi-

alkyl]) 

Pro242 (4.65 

[Lone Pairs]) 

Emodin (after MD) 
Tyr244 (4.88 [classical]); Gly183 

(2.99 [classical]) 
NA NA 

Rhodoptilometrin 

(before MD) 

Ala186 (2.34 [classical]); Ile243 

(4.51 [non-classical]) 

His222 (5.45 [pi-alkyl]); Leu185 (4.48 [alkyl]); 

Val219 (4.66* [alkyl]); Pro242 (4.13 [pi-alkyl], 

5.23 [pi-alkyl]) 

NA 

Rhodoptilometrin 

(after MD) 
Glu223 (4.81 [classical]) 

His222 (4.80 [pi-pi], 4.80 [pi-pi], 6.17 [pi-pi]); 

Val219 (4.35 [alkyl]); Leu218 (4.65 [alkyl]); 

Met240 (4.54 [alkyl]) 

NA 

Chrysophanol (before 

MD) 
Ile243 (4.64 [non-classical]) 

His232 (5.81 [pi-alkyl], 6.22 [pi-pi]); Pro242 

(4.66 [pi-alkyl], 4.69 [alkyl]); Leu185 (5.33 [pi-

alkyl]) 

Pro242 (4.66 

[Lone Pairs]) 

Chrysophanol (after 

MD) 

Leu223 (4.19 [classical]); Pro242 

(4.07 [classical], 4.60 [non-

classical]) 

His222 (4.48 [pi-pi], 5.38 [pi-pi], 5.38 [pi-pi]); 

Val219 (6.50 [pi-alkyl]) 
NA 

Knipholone (before 

MD) 

Gly183 (3.14 [classical]); Ile243 

(3.96 [non-classical]) 

Pro242 (5.09* [pi-alkyl]); Ile243 (4.97 [pi-alkyl], 

5.04 [alkyl]) 

Pro242 (5.23 

[Lone Pairs]) 

Knipholone (after 

MD) 

Ala186 (3.27 [classical]); Glu223 

(4.88 [classical]); Pro242 (3.97 

[classical]) 

Leu184 (5.31 [pi-pi]); Phe241 (6.44 [pi-pi]); 

Phe241 (6.18 [pi-alkyl]); Leu184 (4.64 [pi-alkyl], 

4.64 [pi-alkyl]); Pro242 (4.15 [pi-alkyl], 4.48 [pi-

alkyl], 4.48 [pi-alkyl]); Leu185 (5.24 [pi-alkyl]) 

NA 

Sennidin B (before 

MD) 
NA 

Gly183 (4.74 [pi-alkyl]); Pro242 (5.95 [pi-alkyl], 

6.18 [pi-alkyl]) 
NA 

Sennidin B (after 

MD) 
Pro242 (3.80 [classical]) NA NA 

Aloe Emodin 8-

Glucoside (before 

MD) 

Ser182 (4.19 [classical]) NA NA 

Aloe Emodin 8-

Glucoside (after MD) 

Leu184 (4.68 [classical]); Ser182 

(3.97 [non-classical]); Gly183 (3.69 

[non-classical], 3.94 [non-classical]); 

Pro242 (4.91 [non-classical]) 

NA NA 

Aloe-emodin (before 

MD) 
Ile243 (4.63 [non-classical]) 

His232 (6.20 [pi-pi]); Pro242 (4.65* [pi-alkyl]); 

Leu185 (5.34 [pi-alkyl]) 

Pro242 (4.65 

[Lone Pairs]) 

Aloe-emodin (after 

MD) 

His222 (4.14 [classical]); Ser182 

(3.93 [classical], 4.17 [classical], 

3.93 [non-classical]) 

His222 (6.77 [pi-pi], 6.73 [pi-pi]); Val219 (6.99 

[pi-alkyl]); Pro242 (4.49 [pi-alkyl], 4.59 [pi-

alkyl]) 

NA 

*:MD, molecular dynamics 
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Table 4. Chemo-physical properties of top-10 anthraquinone derivatives associated with the Lipinski’s rule of five 

Ligand name 
Molecular 

weight (g/mol) 
LogP 

Hydrogen Bond 

Donor Count 

Hydrogen bond 

acceptor count 

Number of 

violations from RO5 

Orally 

active drug 

Pulmatin (Chrysophanol 8-

O-glucoside) 
416.4 1.3 5 9 0 Yes 

Sennidin A 538.5 4.8 6 10 2 No 

Emodin-8-glucoside 432.4 0.9 6 10 1 Yes 

Emodin 270.24 2.7 3 5 0 Yes 

Rhodoptilometrin 314.29 2.4 4 6 0 Yes 

Chrysophanol 254.24 3.5 2 4 0 Yes 

Knipholone 434.4 4.2 4 8 0 Yes 

Sennidin B 538.5 4.8 6 10 2 No 

Aloe Emodin 8-Glucoside 432.4 0 6 10 1 Yes 

Aloe-emodin 270.24 1.8 3 5 0 Yes 

LogP: the logarithm of the partition coefficient between n-octanol and water; RO5: rule of five 

 

 

 
 

 

Figure 3. Images from (A) to (J) illustrate two-dimensional interactions, while images from (K) to (T) demonstrate three-

dimensional docked pose, in which left and right images were achieved from docking and molecular dynamics simulations, 

respectively: (A and K): pulmatin; (B and L): sennidin A; (C and M): emodin-8-glucoside; (D and N): emodin; (E and O): 

rhodoptilometrin; (F and P): chrysophanol; (G and Q): knipholone; (H and R): sennidin B; (I and S): aloe emodin 8-glucoside; (J 

and T): aloe-emodin with the residues within the MMP-13 catalytic site 
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Figure 3. Continued 

 

 

 
 

Figure 4. Interactions between top-10 compounds and the residues inside the MMP-13 catalytic site 
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Many other beneficial properties, including anti-

tooth caries and anti-osteoarthritis activities, have 

been reported for AQs; however, their 

mechanism of action has not been clearly 

understood yet [27,43]. In a previous study by 

Uzun et al. [13], a molecular docking analysis 

was performed to evaluate the binding affinity of 

AQ, flavonoid, tannin, and naphthalene main 

skeletons to MMP-1, MMP-8, and MMP-13. As 

a result, the authors reported that the estimated 

binding energy between AQ main skeleton and 

MMP-13 was -7.6 kcal/mol, illustrating that AQs 

can potentially inhibit MMP-13. However, to the 

best of our knowledge, the present study is the 

first research in which a total of 21 AQ 

derivatives were investigated to identify the 

potential MMP-13 inhibitors using molecular 

docking analysis. Beside the study performed by 

Uzun et al. [13], the authors in the current study 

investigated the inhibitory effect of several AQ 

derivatives on MMP-13 at different 

concentrations. Furthermore, Uzun et al. [13] 

demonstrated that pulmatin, emodin-8-glucoside, 

emodin, chrysophanol, aloe-emodin, rhein, and 

phycion inhibited 65.17, 43.61, 42.37, 74.95, 

59.07, 52.92, and 68.39% of the MMP-13 

activity at the concentration of 100 µg/mL, 

respectively. The authors performed their study 

using the inhibitory activity screening assay kits. 

According to the results of the present study, 

pulmatin was shown to have the best binding 

affinity to the MMP-13 catalytic site with a ∆G 

binding of -9.76 kcal/mol followed by sennidin A, 

emodin-8-glucoside, emodin, rhodoptilometrin, 

chrysophanol, knipholone, sennidin B, aloe 

emodin 8-glucoside, and aloe-emodin, 

respectively. In addition, it was estimated that the 

top-10 compounds can considerably block the 

MMP-13 catalytic site at the nanomolar scale. 

Pulmatin (chrysophanol-8-0-glucoside) is an AQ 

mostly identified within rhubarb, as a well-

known rhizome of the Rheum genus such as 

Rheum tanguticum, Rheum palmatum, Rheum 

officinale, and Rheum undulatum, which are 

frequently used in traditional medicine [44-46]. 

Seo et al. [44] in their study reported that 

pulmatin had an inhibitory effect on collagen and 

thrombin induced-platelet aggregation in vivo. In 

another study, Siegers et al. [46] reported that 

chrysophanol 8-O-glucoside could considerably 

down-regulate the expressions of smooth muscle 

alpha-actin (α-SMA) and collagen at the mRNA 

and protein levels compared to transforming 

growth factor beta 1 (TGF-β1)-treated LX-2 cells, 

leading to the STAT3 pathway inhibition, which 

finally resulted in hepatoprotective outcomes. 

Based on the docking results obtained in the 

present study, pulmatin exhibited four hydrogens 

as well as four hydrophobic interactions with the 

Gly183, Leu184, Ala186, Glu223, Ile243, and 

Tyr244 inside the MMP-13 catalytic site. Two of  

them are π – π stack pairing between pulmatin 

and Gly183 (4.37 Å and 4.95 Å), which are 

known as the most stabilizing connections [47]. 

Sennidin A (SA) is a dianthrone extracted from 

the Cassia L., Senna. It was illustrated that it has 

good solubility and stability against aggregations. 

As well, in previous studies, the radioiodinated 

SA (
131

I-SA) has shown anti-tumor properties 

[25]. In this regard, Ji et al. [25] reported that the 

combination of 
131

I-SA with necrosis-inducing 

drugs/therapies could considerably lead to tumor 

growth inhibition in vivo. According to the 

results of the present study, Sennidin A 

demonstrated considerable binding affinity to the 

MMP-13 catalytic domain with ∆G binding as -9.65 

kcal/mol. Moreover, this component revealed 

three hydrophobic interactions with Leu184, 

His232, and Pro242 within the active site of the 

enzyme. The interaction between His232 and 

Sennidin A was found as a π – π stack pairing. 

The estimated ∆G binding between sennidin B and 

the MMP-13 active site was predicted to be -8.51 

kcal/mol. It was demonstrated that three 

hydrophobic interactions existed with the Gly183 

and Pro242 inside the MMP-13 catalytic site. 

Emodin, as a 1,3,8-trihydroxy-6-

methylanthraquinone, is commonly found in 

several Chinese herbs such as Polygonum 

cuspidatum [48], Rheum palmatum [49], Aloe 

vera [50], and Polygonum multiflorum [51]. 

Numerous pharmacological actions have been 

reported in previous studies for emodin, 

including anticancer, anti-inflammatory, 

antimicrobial, neuroprotective, and 

antiosteoporotic properties [52-55]. Ha et al. [31] 

executed a study to examine the anti-

inflammatory effects of emodin on IL-1β and 

LPS-stimulated rheumatoid arthritis synoviocytes 

under hypoxia.  
As a result, they reported that emodin led to the 

decreased expression of cyclooxygenase 2 (COX-

2), hypoxia-inducible factor 1 alpha (HIF-1α), 

vascular endothelial growth factor (VEGF), 
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MMP-1, and MMP-13 at the mRNA level, which 

resulted in the down-regulation of 

proinflammatory cytokines, VEGF, and histone 

deacetylase 1 (HDAC1) in vitro [31]. Liu et al. 

[32] performed a study to examine the effects of 

emodin on several inflammatory factors in 

chondrocytes isolated from rats. The mRNA 

levels of MMP-3 and MMP-13 were measured 

using reverse transcription-quantitative 

polymerase chain reaction (RT-qPCR). In 

addition, the MMP-3 and MMP-13 expressions 

were studied at the protein level using western-

blot analysis. Finally, they reported that emodin 

resulted in the down-regulation of MMP-3, 

MMP-13, and several proteins taking a part in the 

ERK and Wnt/β-catenin signaling pathways, 

which led to the enhanced chondrocytes 

proliferation [32]. 

According to the results of the present study, it 

was estimated that emodin can bind to the MMP-

13 catalytic site at the nanomolar concentration 

(Ki = 279.97 nM) and with a ∆G binding as -8.94 

kcal/mol. As well, Emodin revealed two 

hydrogen, five hydrophobic, and one lone pair 

interaction with the Leu185, Ala186, His232, 

Pro242, and Ile243 within the MMP-13 catalytic 

site. A π – π stack pairing was observed between 

emodin and His232 with the bond length 

estimated as 6.21 Å. The binding affinities of 

several emodin derivatives to the MMP-13 

catalytic domain were also predicted. Emodin-8-

glucoside was predicted to be connected to the 

catalytic domain of MMP-13 with the ∆G binding 

and Ki value of -9.07 and 224.35 nM, 

respectively. Additionally, one hydrophobic 

interaction was found with the Leu184. 

Furthermore, aloe emodin 8-glucoside was 

observed to be connected to the MMP-13 with 

the ∆G binding and Ki value of -8.49 and 594.84 nM, 

respectively. One hydrophobic interaction with 

the Ser182 was demonstrated. Besides, aloe-

emodin attached to the MMP-13 active site with 

the ∆G binding and Ki value as -8.23 and 929.88 nM, 

respectively. Aloe-emodin formed one hydrogen, 

three hydrophobic, and one lone pair interaction 

with Leu185, His232, Pro242, and Ile243. A π – 

π stack pairing was also found between aloe-

emodin and His232 (6.20 Å). Aloe-emodin has 

shown anti-inflammatory effects on arthritis [56-

59]. 

Obtusifolin is an AQ predominantly found in 

Senna. obtusifolia [60], which is widely used for 

therapeutic aims in several disorders like 

rheumatism [28]. It has been reported that 

obtusifolin has some suppressive effects on 

cancer metastasis and can diminish memory loss 

and attenuate mitochondrial apoptosis [60-63]. 

Recently, Nam et al. [27] in their study 

investigated the effect of obtusifolin on 

osteoarthritis inflammation in vitro. Thereafter, 

the authors measured the expressions of MMP-3, 

MMP-13, COX-2, and prostaglandin E2 (PGE2), 

as well as several signaling proteins at the mRNA 

and protein levels using real-time polymerase 

chain reaction (RT-PCR) and western-blotting 

techniques, respectively. According to their 

results, obtusifolin was found to have the abilities 

of inhibiting the MMP-3, MMP-13, and Cox2 

expressions, and decreasing the PGE2 activity, 

leading to the diminished cartilage injury. 

According to the results of the present study, 

obtusifolin can potentially bind to the MMP-13 

catalytic domain with a ∆G binding and a Ki of -

8.10 kcal/mol and 1.15 µM, respectively, 

illustrating a moderate binding affinity between 

these two molecules. 

Rhodoptilometrin is an AQ isolated from 

Himerometra magnipinna [64,65] that can cause 

some cytotoxic effects on several cancer cell 

lines, including MCF-7 breast cancer, SF-268 

glioblastoma, and the H460 non-small-cell lung 

cancer [66]. Tseng et al. [67] demonstrated that 

rhodoptilometrin could considerably progress the 

wound healing process, cell migration, and 

proliferation of human gingival fibroblasts. 

Moreover, rhodoptilometrin resulted in the 

overexpression of focal adhesion kinase (FAK), 

fibronectin, type I collagen, and proteins 

involved in the mitochondrial complexes I~V, 

consequently leading to the enhanced gingival 

regeneration. It is worth mentioning that gingival 

recession is an oral disorder in which the gum 

tissue impairment may possibly result in the 

exposure of the teeth roots that could 

subsequently cause tooth decay [68], 

hypersensitivity of dentin [69], and aesthetic 

problems [70]. Based on our findings, it is 

estimated that rhodoptilometrin can be connected 

to the MMP-13 active site at the concentration of 

285.97 nM with the ∆G binding of -8.93 kcal/mol. 

Therefore, it may be suggested that 

rhodoptilometrin could be considered as a 

potential anti-tooth caries compound with two 

mechanisms: firstly, by promoting the human 

gingival regeneration, and secondly, via 

inhibiting the MMP-13 activity. 
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Rhodoptilometrin demonstrated two hydrogen 

and five hydrophobic interactions with Leu185, 

Ala186, Val219, His222, Pro242, and Ile243 

inside the MMP-13 catalytic domain. 

Chrysophanol is an AQ derivative (1,8-

dihydroxy-3-methyl-anthraquinone) extracted 

from Rheum undulatum L. which can be 

commonly found in China and European 

countries [71,72]. Various pharmaceutical 

properties of chrysophanol such as antioxidant, 

anti-inflammatory, antimicrobial, anti-ageing, 

and neuroprotective effects have been 

demonstrated previously [29,30]. Several 

previous studies have shown anti-tumorigenesis 

activities of chrysophanol against lung [73,74], 

colorectal [75,76], oral cancer cell lines [77,78], 

breast [79,80], prostate [81], ovarian [81], liver 

[82,83], and cervical cancer [84]. According to 

our results, it was indicated that chrysophanol 

can inhibit the MMP-13 activity at the 

concentration of 338.39 nM with a ∆G binding of -

8.83 kcal/mol. One hydrogen, five hydrophobic, 

and one loan pair interactions with the amino 

acids were found inside the active site of the 

MPP-13. 

To study the stability of the docked pose between 

the top-10 AQs and MMP-13 active site, the 

interactions between the compounds and the 

residues of the protein were compared in terms of 

before and after the molecular dynamics 

simulations. Accordingly, it was observed that 

the docked poses of pulmatin, emodin-8-

glucoside, emodin, rhodoptilometrin, 

chrysophanol, knipholone, aloeeEmodin 8-

glucoside, and aloe-emodin within the MMP-13 

active site were considerably stable; therefore, 

these AQs can be considered as the effective 

inhibitors of MMP-13. In this regard, the 

following points can be mentioned: 

1. Pulmatin demonstrated two hydrogen bonds, 

including one classical and one non-classical 

H-bonds, after the molecular dynamics 

simulation. The interaction between pulmatin 

and Glu223 was found to be stable after the 

molecular dynamics simulation, as well. 

2. Emodin-8-glucoside revealed four hydrogen 

bonds, including one classical and three non-

classical H-bonds, after the molecular 

dynamics simulation. 

3. Emodin showed two classical H-bonds after 

the molecular dynamics simulations. 

4. Rhodoptilometrin illustrated one classical H-

bond and six hydrophobic interactions, 

including three stabilizing π–π interactions, 

after the molecular dynamics simulation. The 

interaction between rhodoptilometrin and 

Val219 was found to be stable after the 

molecular dynamics simulation. 

5. Chrysophanol exhibited three hydrogens 

(including two classical and one non-classical 

H-bond) as well as four hydrophobic 

interactions (three of which were π–π 

stabilizing interactions) after the MD 

simulation. 

6. Knipholone had three classical H-bonds as 

well as nine hydrophobic interactions (two of 

which were π–π stabilizing interactions) after 

the MD simulation. Of note, the interaction 

between knipholone and Pro242 was found to 

be stable after the MD simulation. 

7. Aloe emodin 8-glucoside formed five 

hydrogen interactions after the MD simulation, 

one of which was classical H-bond. 

8.  Aloe emodin revealed four hydrogen 

interactions (including three classical and one 

non-classical H-bond) as well as five 

hydrophobic interactions (including two π–π 

stabilizing interactions and three pi-alkyl 

interactions) after the MD simulation. 

Moreover, sennidin B only performed one 

hydrogen bond after the MD simulation; 

therefore, it may be suggested that the docked 

pose of sennidin B was not considerably stable 

inside the MMP-13 catalytic domain. In addition, 

sennidin A revealed no interaction with the 

residues of the MMP-13 after the MD simulation, 

so it could not be considered as a stable inhibitor 

of the MMP-13. Figure 3 shows the three-

dimensional docked poses of the top-10 AQs 

within the MMP-13 active site before and after 

the MD simulations. 

 

Conclusion 
In the present study, a total of 21 AQs were 

docked to the MMP-13 active site using the 

AutoDock 4.0 software, to estimate the binding 

affinity of these plant-based compounds to the 

target protein. The stability of the docked poses 

of the top ranked AQs was examined in a 1ns 

simulation. The results showed that pulmatin, 

sennidin A, emodin-8-glucoside, emodin, 

rhodoptilometrin, chrysophanol, knipholone, 

sennidin B, aloe emodin 8-glucoside, and aloe-

emodin possessed considerable binding affinities 

to the active site residues of the MMP-13. 

However, by conducting the MD simulations, it 



Identifying MMP-13 inhibitors from anthraquinones 

 

47 

was revealed that the docked poses of sennidin A 

and sennidin B were not considerably stable. The 

chemo-physical analysis showed that, except 

sennidin A and sennidin B, all top-ranked AQs 

could be considered as orally active drugs. 

Nevertheless, the efficacy of these compounds 

must be examined using experimental approaches 

in future studies, to reach more effective 

compounds for therapeutic applications in several 

human disorders, including cancer, Alzheimer's 

disease, osteoarthritis, skin ageing, and dental 

caries. 
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