Total phenolic and flavonoid contents and antioxidant activity of four medicinal plants from Hormozgan province, Iran

Document Type : Original paper

Authors

1 Department of Pharmacognosy, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS).

2 Herbal Medicines Research Center, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (HMRC).

Abstract

Background and objectives:Hormozgan province is located in the south of Iran, bordering waters of the Persian Gulf and Oman Sea. Due to the antioxidant potential of plants which might be responsible for their medicinal properties, the antioxidant properties of four medicinal plants of the region were evaluated.
Methods: The antioxidant properties of Chrozophora obliqua, Daphne mucronata, Salvia aegyptiaca and Suaeda vermiculata were evaluated by four different methods: free radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH), metal chelating activity, inhibition of lipid peroxidation by the ferric thiocyanate method, and total reduction capability. The flavonoid and phenolic content of the plants were also analyzed. Results: Amongst the species, C. obliqua showed the best result in metal chelating activity test, and S. vermiculata showed the best antioxidant activity in the three other assays, and S. vermiculata and S. aegyptiaca had the highest amount of phenolic and flavonoid contents.
Conclusion: The acceptable antioxidant activity of S. vermiclata as a halophyte plant, could justify the medicinal properties of the plant.

Keywords


[1] Sun C, Wang J, Fang L, Gao X, Tan R. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. Life Sci. 2004; 75(9): 1063-1073.
[2] Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84.
[3] Burton GJ. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011; 25(3): 287-299.
[4] Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Nourbakhsh Dehkordi K, Ghannadi A. An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed. 2013; 3(1): 64-81.
[5] Hyson DA. A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr. 2011; 7(3): 295: 408-420.
[6] Pellati F, Benvenuti S, Magro L, Melegari M, Sorgani F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J Pharm Biomed Anal. 2004; 35(2): 289-301.
[7] Soltanipoor MA. Medicinal plants of the Geno protected area. Pajouhesh & Sazandegi. 2005; 18(3): 27-37.
[8] Zandi Esfahan E, Assareh MH, Jafari M, Jafari AA, Javadi A, Karimi G. Phonological effects on forage quality of two halophyte species Atriplex leucoclada and Suaeda vermiculata in four saline rangelands of Iran. J Food Agric Environ. 2010; 8(3&4): 999-1003.
[9] Amirghofran Z, Miri R, Javidnia K, Davoodi M. Study of cytotoxic activity of Daphne mucronata royle grown in Iran. Iran J Med Sci. 2001; 26(3&4): 146-151.
[10] Delazar A, Talischi B, Nazemiyeh H, Rezazadeh H,  Nahar L, Sarker SD. Chrozophorin: a new acylated flavone glucoside from Chrozophora tinctoria (Euphorbiaceae). Braz J Pharmacogn. 2006; 16(3): 286-290.
[11] Cybulska I, Brudecki G, Alassali A, Thomsen M, Jed Brown J. Phytochemical composition of some common coastal halophytes of the United Arab Emirates. Emir J Food Agric. 2014; 26(12): 1046-1056.
[12] Sakkir S, Kabshawi M, Mehairbi M. Medicinal plants diversity and their conservation status in the United Arab Emirates (UAE). J Med Plants Res. 2012; 6(7): 1304-1322.
[13] Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958; 181(4617): 1198-1200.
[14] Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents. J Food Sci. 1993; 58(6): 1407-1410.
[15] Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Japan J Nutr. 1986; 44(6): 307-315.
[16] Dinis TC, Madeira VM, Almeida LM. Action of phenolic derivatives (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994; 315(1): 161-169.
[17] Folin O, Ciocalteu V. On tyrosine and tryptophane determination in proteins. J Biol Chem. 1927; 73(2): 627-650.
[18] Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004; 84(3): 329-339.
[19] Sun J, Trumpower BL. Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys. 2003; 419(2): 198-206.
[20] Sharma P, Bhushan Jha A, Shanker Dubey R, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012; 20(12): 1-26.
[21] Singh Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010; 48(12): 909-930.
[22] Bouayed J, Bohn T. Exogenous antioxidants-double-edged swords in cellular redox state health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010; 3(4): 228-237.
[23] Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015; 11(8): 982-991.
[24] Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011; 89(3): 217-233.
[25] Reginato MA, Castagna A, Furlán A, Castro S, Ranieri A, Luna V. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: oxidative damage and the role of polyphenols in antioxidant protection. Aob Plants. 2014; 6(7): 1-13.
[26] Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem. 2007; 45(3-4): 244-249.
[27] Cao H, Xie Y, Chen X. Type 2 diabetes diminishes the benefits of dietary antioxidants: Evidence from the different free radical scavenging potential. Food Chem. 2015; 186: 106-112.
[28] Stepanić V, Gall Trošelj K, Lučić B, Marković Z, Amić D. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem. 2013; 141(2): 1562-1570.
[29] Benwahhoud M, Jouad H, Eddouks M, Lyoussi B. Hypoglycemic effect of Suaeda fruticosa in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2001; 76(91): 35-38.
[30] Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012; 132(2): 943-947.
[31] Haraguchi H. Antioxidative plant constituents. In: Tringali C, Ed. Bioactive compounds from natural sources. New York: Taylor and Francis, 2001.
[32] Farombi EO, Ogundipe OO, Samuel Uhunwangho E, Adeyanju MA, Olarenwaju Moody J. Antioxidant properties of extracts from Alchornea laxiflora (Benth) Pax and Hoffman. Phytother Res. 2003; 17(7): 713-716.
[33] Pietria S, Maurellia E, Drieub K, Culcasia M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba Extract (EGb 761). J Mol Cell Cardiol. 1997; 29(2): 733-742.
[34] Munné-Bosch S, Schwarz K, Alegre L. Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 1999; 121(3): 1047-1052.
[35] Silva BA, Ferreres F, Malva JO, Dias ACP. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005; 90(1-2): 157-167.
[36] Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot. 2014; 65(5): 1241-1257.
[37] Gupta D. Methods for determination of antioxidant capacity: a review. Int J Pharm Sci Res. 2015; 6(2): 546-466.
[38] Amessis-Ouchemoukha N, Abu-Reidahb IM, Quirantes-Pinéb R, Madania K, Segura-Carreterob A. Phytochemical profiling, in vitro evaluation of total phenolic contents and antioxidant properties of Marrubium vulgare (horehound) leaves of plants growing in Algeria. Ind Crops Prod. 2014; 61: 120-129.
[39] Yan G, Ji L, Luo Y, Hu Y. Antioxidant activities of extracts and fractions from Eupatorium lindleyanum DC. Molecules. 2011; 16(7): 5998-6009.
[40] Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med. 1990; 8(1): 95-108.
[41] Gülçin I. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 2006; 217(2-3): 213-220.
[42] Yuan YV, Bone DE, Carrington MF. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005; 91(3): 485-494.
[43] Mohamed KM, Ohtani K, Kasai R, Yamasaki K. 3-Hydroxy-3-methylglutaryl dolabellane diterpenes from Chrozophora oblique. Phytochemistry. 1995; 39(1): 151-161.
[44] Pucciariello C, Banti V, Perata P. ROS signaling as common element in low oxygen and heat stresses. Plant Physiol Biochem. 2012; 59: 3-10.